
Towards a Concurrence Analysis in Business

Processes

Anastasija Nikiforova

Faculty of Computing

University of Latvia

Riga, Latvia

Anastasija.Nikiforova@lu.lv

Janis Bicevskis

Faculty of Computing

University of Latvia

Riga, Latvia

Janis.Bicevskis@lu.lv

Girts Karnitis

Faculty of Computing

University of Latvia

Riga, Latvia

Girts.Karnitis@lu.lv

Abstract- This paper presents first steps towards a solution aimed

to provide concurrent business processes analysis methodology

for predicting the probability of incorrect business process

execution. The aim of the paper is to (a) look at approaches to

describing and dealing with the execution of concurrent

processes, mainly focusing on the transaction mechanisms in

database management systems, (b) present an idea and a

preliminary version of an algorithm that detects the possibility of

incorrect execution of concurrent business processes. Analyzing

business process according to the proposed procedure allows to

configure transaction processing optimally.

Keywords— business process correctness, concurrence control,

symbolic execution, transaction.

I. INTRODUCTION

Nowadays, the majority of the systems support multiple
users’ simultaneous access. Any user should have a possibility
to access the system or database (DB) without any concern
regarding other users that can modify the same data at the
same time. This means, that very efficient concurrency
managing mechanisms should be involved, that would ensure
the impression that all the operations are executed in such a
way that they are executed serially – one by one. If user(s)
requests require updating the data (insert, update or delete),
special algorithms are required for concurrent writings. The
problems that might arise relate to cases where multiple users
send requests for modifying the same data set, or some of
them send updating requests and others send retrieval requests.
The most common way to solve these challenges is to block
access to the DB while each request is resolved. In this way,
each request is resolved sequentially, but the operation of the
system is affected significantly.

Numerous solutions were carried out in recent decades,
some of which will be discussed in this paper, taking into
account the main aspects and areas to which they relate.
Despite users’ perspective, it can be assumed that this
challenge has been already resolved and that there is a list of
possible alternatives already in-built in database management
systems (DBMS), recent studies have shown that this issue is
still ongoing even in the scope of leading DBMS (for instance,
[1]). In addition, relatively new topics such as Internet of
Things (IoT) [2]-[5] and even metadata performance
scalability [6] deal with concurrent processes. Moreover,
recent studies have indicated that this topic is important even
in the case of analytical and modeling solutions combating

COVID-19 [7]. However, this study proposes a completely
different solution that is not limited to specific DBMS,
focusing on modeling the concurrent business processes to
ensure that the probability of incorrect concurrent execution is
low.

Perhaps one of the most popular examples of concurrent
business process is order handling, when one of the steps -
order packaging, follows provision materials that take place as
two parallel processes, such as provision materials from
existing stock and from external suppliers, and consists of
invoicing and packaging materials that are used for this
process, after which order can be shipped. If several
concurrent processes carry out activities with the same data,
another process may change the data, when the first process
was interrupted. This may result in incorrect system result,
which may not occur if the processes are executed serially, i.e.
when the second process starts only when the first process is
over.

The aim of the study initiated is to propose a methodology
for the analysis of the business process(-es) in order to predict
the probability of an incorrect concurrent execution of
business process(-es). This would allow to configure
transaction processing so that they cannot be processed
incorrectly. It would point to potentially incorrect results
whilst running business processes concurrently and allow
system developers to redesign business process to prevent it.
The aim of the paper is to present the preliminary version of
the idea by explaining the rationale for the study, from basic
concepts to the overview of the existing solutions related to
the matter.

The paper deals with following issues: main concepts
related to the topic presented and the rationale for the study
(Section 2), review of existing solutions (Section 3), a
description of the solution proposed (Section 4), conclusions
and future work (Section 5).

II. MAIN CONCEPTS AND RATIONALE FOR THE STUDY

A. Basic Concepts

 Databases, both centralized and distributed, are often used
to perform transactions - a set of data-dependent operations
requested by the system user (some combinations of retrieval,
update, deletion or insertion operations). The completion of
the transaction is called a commitment and a cancellation
before it is completed is called an abort.

One of the main properties of the transaction is an
atomicity, which means that all operations related to a
particular transaction must be carried out or none of them can
be performed. That is, if a transaction is interrupted due to a
failure, the transaction must be aborted so that its partial
results are undone (i.e., rolled back) and, if the transaction is
completed, the results are preserved (i.e., committed) despite
subsequent failures [8]. It is also known that, in order to
preserve data integrity, the DB system should provide a set of
ACID properties, more precisely atomicity, consistency,
isolation and durability. The study is closely linked to the
isolation which is intended to hide the intermediate results of
transaction from other concurrently executed transactions.

Concurrency control is a coordination of concurrent
access to the DB while maintaining consistency of the data.
Concurrency control techniques are divided into (1) optimistic
concurrency control, which assumes that conflict is rare and
it is possible to repair the potential losses caused by such
violation, therefore, it delays the synchronization of
transaction until transactions are close to their completion, and
(2) pessimistic concurrency control that synchronizes the
concurrent execution of transactions at the beginning of their
execution life cycles, in other words, when an algorithm
receives an operation, it makes a decision whether to accept,
reject or delay this operation [9]. The pessimistic approach is
considered safer than the optimistic, as it avoids potential
problems rather than resolves them [10]. The optimistic
concurrency control requires an effective repair mechanism
and collisions cannot be destructive, so it is most effective
when rarely conflicting writing operations take place [10].
Another type is multiversion concurrency control, according
to which old versions of the data item are stored to increase
concurrency. This algorithm has more flexibility in controlling
the reads and writes order and it shows better performance in
the cases with more “read-only” transactions, but needs a large
storage space to preserve multiple versions of the data item.

B. Rationale for the Research

 Practice demonstrates that there are cases when the data
processing process Pi consists of several transactions {T1, T2,
…, Tn}, where each transaction is independent and has its own
BEGIN TRANSACTION … COMMIT TRANSACTION
block. Thus, there are cases when within the one transaction
ACID properties are fulfilled, but processes P1, P2, …, Pn
contain several steps where each contain one or more
transaction calls and does not have a common BEGIN
TRANSACTION … COMMIT TRANSACTION block.
Therefore, the transaction management algorithms used by
DBMS in this situation will not be able to prevent another
process Pm from changing the data used by process Pk or
reading and using intermediate results that may lead to
incorrect results during the execution of the Pk process
(between Ti and Ti+1 calls). Such a case is possible either
because of an error of programmers or because of the nature of
the process, for instance, the process is so long that it is not
reasonable to keep the total/ common resource locked during
the process; therefore, there are breakpoints in the process
where the shared resource is unlocked. It is even more difficult
to analyze data processing processes, that are carried out

within a number of systems, for which it is not even possible
to create a common transaction.

This study addresses concurrent processes Pa, Pb, …, Pz
and their execution correctness which is defined according to
the correctness of ACID. The DB is considered to be correct if
it meets constraints imposed on it. The execution of a
transaction brings a DB from one consistent state into another
consistent state, thus, the execution of the transaction on the
correct DB ensures its correctness after its execution. The
result of serial execution of several transactions is correct,
thus, if one process is carried out without concurrent execution
of other process, the result is correct. If a series of several
processes is performed, the result is correct. There may be
several different, but correct results - depending on the order
of execution, one of the possible correct results is achieved. As
a result, an exact criterion for any process and any input

data correctness is the result obtained by one of the serial
processes (in line with [11]).

Concurrent execution is characterized by non-deterministic
behavior that means that the repeated concurrent execution of
several processes Pi with the same input data X yields
different results that are caused by different sequence of
synchronization events [12]. This fact makes concurrent
processes difficult to test [13] since it is not enough to have a
single sequence of processes that gives the correct result, it is
vital to make sure that all possible orders provide correct
results with all possible input data X.

According to [12], one of the simplest and obvious
approaches to deal with non-deterministic behavior is to
execute it with a fixed input many times and hope that faults
will be exposed by one of these executions (philosophy is
close enough to optimistic concurrency) called non-
deterministic testing and it is easy to carry out, but it can be
very inefficient. It is possible that some behaviors of
concurrent program are exercised many times while others are
never exercised. An alternative approach is called
deterministic testing, which forces a specified sequence of
synchronization events to be exercised. This approach allows
concurrent program to be tested with carefully selected
synchronization sequences. The test sequences are usually
selected from a static model of concurrent program or its
design. However, accurate static models are often difficult to
build for dynamic behaviors. An approach that combines non-
deterministic and deterministic testing is reachability testing.
This approach gets our preference in scope of this study as the
most comprehensive one.

Another point is how to ensure that all possible inputs will
be tested, since their number can be very high and even
infinite. Here comes symbolic execution which operates on
symbolic variables, where each possible initial state is
considered instead of specific input data and all possible
actions of the program are investigated [14]. In addition, [15]
(and not only) have demonstrated that this technique
significantly improves error finding in the way of resources.
Thus, to cover all possible cases to be verified, the study
launched will use symbolic execution.

III. STATE OF THE ART

 Since a transaction is a concept closely linked to databases,
let’s first look at the more classic solutions in terms of
databases, then focusing on more specific solutions.

 Perhaps the most popular concept in terms of concurrent
execution of multiple transactions is isolation - property that
significantly simplify concurrent programming, since each
transaction can be viewed separately, rather than having to
consider all possible interleavings of their operations with
other transactions. There are 4 “classical” isolation levels
defined in ANSI SQL-92: read uncommitted, read committed,
repeatable read and [anomaly] serializable [16]. In addition,
one more isolation level appears to be popular and pre-defined
in the number of DBMS, namely, snapshot isolation.
However, depending on the isolation level, the number of
possible phenomena can occur, more precisely, dirty read,
non-repeatable read, lost update, and phantom read. In
addition, isolation may also limit the applicability of
transactions. For instance, according to [17], isolated
transactions are incompatible with some common
synchronization mechanisms, such as barriers and ordinary
condition variables. More generally, while isolation seems to
be an effective mechanism, it disallows programming idioms
that require communication between transactions while they
are active [17]. In addition, increased transaction isolation
leads to a reduction in concurrency that is because isolation is
usually done by blocking records, i.e. by setting locks, and if
multiple rows are blocked, fewer transactions can be executed
without temporary locking. While reduced concurrency is
generally accepted as a compromise for higher transaction
isolation level needed to maintain DB integrity, it may become
a problem in interactive application with high reading/ writing
activity [18].

The majority of the SQL-based solutions uses lock-based
isolation levels, thereby let us briefly discuss the concept of
locks and their diversity. Locking is a mechanism used to
synchronize multiple users’ simultaneous access to the same
data by isolating so-called critical code regions. Before a
transaction takes action, such as reading or modifying, it must
protect itself from the consequences of another transaction that
changes the same data. This can be achieved by requesting
locks that can be of different mode, the most popular of which
are shared and exclusive. In addition to these locking modes,
there are three additional intention lock modes with multiple
granularities, namely, intension-shared (IS), intension-
exclusive (IX) and shared and intension-exclusive (SIX). The
mode determines the extent to which the transaction depends
on the data. No transaction can be assigned a lock that
conflicts with a lock that was already assigned to these data
for another transaction. It is usually managed by the
concurrency control manager, which checks what lock the
data require to protect each resource based on the setting of
the access type and transaction isolation level, and whether it
is possible to assign this type of lock without violating the
locks already assigned. In the case of a SQL Server, if a
transaction requests a lock that conflicts with a lock that was
already assigned on the same data, a SQL Server Database
Engine instance pauses a transaction that requests that lock
until the first lock is released or removed. Modern DBMS

provide a variety of granularity locks that allow to lock row
(RID in the case of SQL Server), table (PAGE) and the whole
DB (DATABASE). According to [9], the lock maintenance
represents an overhead that is only needed if the conflicts
occur; this overhead is justified only if the conflicts are rather
likely (pessimistic assumption).

Another concept close enough and sometimes used with
locks is semaphore. The aim of the semaphores is to order
events, such as the execution of different critical regions.
According to [17], two independent mechanisms (locks and
semaphores) are not sufficient; rather, it would be better to
have structured mechanisms that integrate them, such as
monitors that can use the conditional variables. The authors
argue that the current mechanisms do not provide a condition
for synchronization with transactions, i.e. a mechanism that
integrates transactions and ordering of events in a way that is
analogous to the conditional variable. They conclude that the
existing proposals for such synchronization include (a)
conditional critical region (CCR) style transactions that allow
the transaction to be executed only if a particular condition is
fulfilled, and where the execution of the transaction is delayed
until the condition is true, (b) a retrial construct that aborts the
transaction that calls retry, and repeat its execution only when
something in that transaction's read or write set is modified,
and (c) the waiting construct or ordinary condition variable,
which “punctuates”, i.e., commits, the waiting transaction and
begins a new transaction for the waiting thread on receipt of a
notification from a concurrent transaction. But none of these
proposals provides synchronous communication, such as n-
way rendezvous, between concurrent transactions [17].

Therefore, there is a list of more specific solutions
addressing this issue that were identified in the literature
survey, founding several interesting studies that will be
covered in this Section. The most popular and intuitive idea is
the establishment of communication between transactions.

Considering that both approaches may have pros and cons,
there are studies such as [9] that suggest hybrid concurrency
control which is ensured by dynamically switching between a
pessimistic and optimistic approach based on the value of
conflict rate over the last n minutes, which should provide
better performance. This algorithm uses adaptive resonance
theory–based neural network when deciding whether to grant a
lock or detecting a winner transaction. In addition, the
parameters of this neural network are optimized with a
modified gravitational search algorithm. The results of the
developed algorithm application show that the algorithm
proposed results in more than 35% reduction in the number of
aborts in high-transaction rates compared with a strict two-
phase locking.

One of the most impressive solutions is [8], proposing a
distributed transaction approach, where all DB replicas are
updated with a single, distributed transaction, which means
that whenever a data item is updated with a transaction, all
copies or replicas of that data item are updated as part of the
same transaction. As a result, all replicas are completely
synchronized. To ensure atomicity, the atomic commit
protocol, such as 2 Phase Commit (2PC) protocol, should be
used in distributed transaction-based systems. The idea of 2PC

is to identify a unique decision for all replicas with respect to
either committing or aborting a transaction and then executing
that decision at all replicas. However, 2PC requires (1) each
replicated database facility to submit a READY message
before a transaction can be committed, which means that any
site or link failure causes all activity to be halt until the site or
link is repaired; (2) the transmission of at least 3 messages per
replicated DB per transaction, that results in substantial
communications resources and reduces the system's response
time and throughput; (3) both, the coordinator and all
participants must record the decision and the final outcome to
stable storage, which involves 2 forced disk writes per
participant per transaction, adding significant overhead. While
some protocols have been proposed as a solution to the first
problem, they impose even more communications overhead
than 2PC. Thus, the author proposes to use a state machine
approach to create a replicated, fault-tolerant DB system
capable of coordinating the execution of concurrent
transactions. In order to ensure the transaction atomicity and
data consistency on each replicated DB server, application
servers execute one of two new protocols – (1) 1 Phase
Coordinated Commit (1PCC) protocol which is more
efficient by lacking the rendezvous step, but does not provide
consistent serialization orders on all DB servers and thus only
suitable for transactions whose results are independent on the
order in which they are executed relative to other transactions,
or (1) 2 Phase Coordinated Commit (2PCC) protocol
ensuring consistent serialization orders at each DB facility for
all transactions which run at a serialization level guaranteeing
repeatable reads and "phantom" protection. Both protocols are
only concerned with the surviving cohorts - they can commit
transactions despite the failure of the cohort. Consequently,
the system provides improved fault-tolerance over traditional
replicated systems, essentially ignoring failed replicas. This
means that all surviving replicas are still processed because
the failures are fully transparent to application clients.

[17] suggests using so-called transaction communicator
objects. It is based on the waiter and the notifier. According to
the proposal, this may extend transactional memory
implementations to support transaction communicators and /or
transaction condition variables for which transaction isolation
is “relaxed” and through which concurrent transactions can be
communicated and synchronized with each other.
Transactional accesses to these objects must not be isolated
unless they are called in communicator-isolating transactions.
The waiter’s transaction can invoke a wait method of a
transaction condition variable, which can be added to a
waiting list for the variable and be suspended while pending
for a notification event from the notify method of the variable.
The notifier’s transaction may call a notify method of the
variable, that may remove the waiter from the waiting list,
schedule the waiter transaction for resumed execution and
notify the waiter of the notification event. The waiter’s
transaction may only be committed if the corresponding
notifier transaction commits. If the waiter’s transaction is
aborted, the notification may be forwarded to another waiter.
This is also an example of the establishment of
communication between transactions.

The presented idea significantly differs from the existing
proposals. However, its idea can be [partly] compared with
[19], in which authors proposed a debugging approach to
Standard ML. It is not related to the study being launched,
since the proposed study is intended to be applied to business
processes, however, the authors (a) addressed the challenges
of debugging a non-deterministic concurrent symbolic
language, and (b) proposed an approach dealing with non-
determinism. In addition, they also emphasize that the
equivalence of behavior will be in the form of equality
between possible execution histories.

IV. THE PROPOSED SOLUTION

 The study proposes an algorithm for a business process
that uses a transaction mechanism, analysis that aims to
determine the probability of incorrect concurrent execution of
multiple processes. The study is divided into two main parts:
(1) a modeling language called CPL-1 (Concurrent Process
Language) that uses the transaction mechanism, and (2) an
algorithm that, for every two processes defined in CPL-1,
determines the probability of an incorrect execution of
concurrent processes that is achieved in 3 interrelated steps:
(1) creating a tree of possible scenarios, where each path
represents one execution scenario; (2) defining the conditions
for the feasibility of scenarios; (3) identifying incorrect
concurrent execution conditions as a result of the solving
conditional systems (Fig.1).

The proposed computing system is simple enough and it
consists of (1) processes, (2) transactions, (3) input data, (4)
processor which executes commands. As for process, (a)
programs defined in CPL-1 can use local variables only, (b)
variable can store a real number, (c) multiple variables can
form a logical and numerical expressions, (d) numeric
expressions can have only add- and subtraction operations, (e)
programs can use operators assigning value to variable. The
limitations regarding operations to be used are related to the
fact that, if all arithmetic operations and complex functions are
allowed to be applied, the conditions of scenarios may contain
inequality systems that cannot be resolved. Thus, the nature of
these operations is limited at this stage, to ensure systems to be
solved are linear and easy to analyze, therefore, it is possible
to find a solution, if any, or to prove that the solution does not
exist.

 For programs defined in CPL-1, (a) the process can call
multiple transactions, which follows classical rules –
transaction is executed entirely, either all operations defined in
the transaction are executed, or they are cancelled, (b)
transactions are not interrupted during their execution, and
another process is not executed, (c) concurrent execution of
multiple processes is performed before or after the transaction
is completed - transaction ending command is a breakpoint,
when switch to another process can take place.

Fig. 1. Steps of the proposed algorithm.

For input data, which may be parameters or global
resource, parameter values are passed on to a transaction when
it is called, however, a global resource is a variable that is
available for multiple transactions that can be executed
concurrently and can read and write multiple transactions.

Therefore, CPL-1 allows such constructions as:

• START PROCESS … COMMIT PROCESS,

• BEGIN TRANSACTION … COMMIT

TRANSACTION,

• READ(x, R),

• WRITE(x, R), which suppose read/ write of variable

x value to the global resource R.

In addition, such logical constructions as “IF L THEN
BLOCK1 <ELSE BLOCK2> ENDIF” are allowed, where
block can contain one or more commands, for instance: y =
EXPR(x1, x2, .., xn), where EXPR is linear expression, x1, x2,
.., xn are arguments and y – is a result.

Execution of one or more concurrent processes forms a
session. The value of the global resource is defined at the
beginning of the session. Processes are called by passing
parameters to them. The process may contain multiple
transaction calls. After each call and end of the transaction,
there is possible breakpoint followed by a call of the next
transaction and, possibly another process. CPL-1 does not
suppose dealing with cycles. The programme contains only
paths of finite length and the number of concurrent execution
scenarios for multiple processes is also finite. This means that
for each program defined in CPL-1, the finite scenario tree
(Fig. 1 step 1) can be created where each scenario will be in
the form of P1(T1)>P1(T2(a,b))>P2(T1)>P2(T2(y,z)), where
a..z are commands to be executed. The inability to allow
cycles is due to the fact that it is not possible to create a
complete test set (CTS) for programmes containing cycles and
two-way counters.

CPL-1 formalized language is modeled before configuring
the transaction process (step 0). Then, using the proposed
analysis algorithm, the probability of incorrect process
execution can be detected. If this possibility is revealed, the
implementation of the business process must be redone, by
reducing the risks identified. If such incorrect execution is not
possible, the transaction mechanism may be granted the
highest level of concurrency, since it has been demonstrated
that the incorrect execution of the whole business process is
not possible. For instance, if a billing operation is carried out,
two possible mechanisms are possible, (1) with or (2) without
reservation. The application of the proposed mechanism
supports an intuitive assumption that a transactions execution
without reservation can lead to an incorrect result, however, if
reservation takes place, the results of all possible scenarios
will be correct and the highest level of concurrency can be
granted if such a mechanism is implemented (see our “toy
example” in [20]). Let us take a look on how this can be
ensured in more detail.

When the transactions are executed in a serial manner –
each next transaction Ti+1 begins when the previous Ti is
ended - the result is not dependent on the time dimension. The
concurrent execution of business processes that uses a

transaction mechanism is affected by the order of the
execution of multiple individual transactions. This results in
two sets of process execution scenarios – (1) concurrent (C) -
a set to be analyzed and (2) serial (S) - a set against which the
first set to be analyzed.

The transaction is considered a “white box” in this study,
so when the structure of the business process is known, there
is hope to take advantage of the “white box” compared to the
“black box”. One of the most popular methods of “white box”
analysis, namely the symbolic execution, allows the creation
of execution conditions for any predefined scenario. Thus,
symbolical execution of the corresponding commands, where
real parameter variable xn is replaced with symbolic value,
results in the conditions for the feasibility of scenarios (Fig. 1
step 2). Such an approach is widely used in studies involving
automatic test generation, such as Microsoft product
IntelliTest, which is able to generate test data and a set of unit
tests for the C# programs, performing an analysis of cases for
each conditional path in the code, visiting each execution path.
This approach allows creating tests with high code coverage
(also in line with [21]). As a result, symbolic execution got a
preference and is used to execute business process program
that will result in setting up the conditions for execution
scenarios. However, it is not a secret that symbolic execution
can lead to a large number of case distinctions [14]. If two
processes are interleaved, each step has two cases - either the
first or the second process transition is executed. As a result,
the size of the test tree is exponential in the number of
transitions of the interleaved processes. However, it is very
common that the order of executing interleaved transitions
does not affect the resulting situation [14]. This fact will be the
case for future studies.

When a feasibility tree (for the basics of the concept, see
[22]) covering all possible scenarios for two business
processes is created, it is necessary to identify cases where the
results of concurrent and serial execution differ, which is done
comparing the feasibility conditions and execution results of
each concurrent execution scenario with the conditions and the
results of each serial execution (Fig. 1 – step 3). If the
feasibility conditions of the serial execution feasibility
scenario are equal to one of the concurrent executions, but the
results are different, an incorrect concurrent execution is
detected, due to the fact that the result obtained cannot be
achieved by performing any of the serial executions (Fig. 1 –
step 3b). Analysis of different scenarios allows identifying
inconsistencies between the results of execution of serial and
concurrent scenarios. This indicates the probability of
incorrect concurrent execution of the business processes (see
an example in [20]).

Despite this time the case of two concurrent processes was
mainly discussed, the concurrent execution of more than two
processes is also possible. The proposed algorithm can find all
possible concurrent scenarios and parameter value conditions
for an arbitrary number of processes and transactions, leading
to incorrect execution. However, depending on the number of
processes, transactions, breakpoints, and the complexity of the
programs, the size of scenario tree can grow rapidly. This
means that tool to support concurrent execution analysis is
required.

V. CONCLUSIONS

 This preliminary paper deals with the concurrent execution
of business processes. The main idea of the launched study is
proposed, more precisely, to reveal the possibility that the
business process is being implemented incorrectly by
detecting the incorrect execution of concurrent processes.
This, in turn, is linked to the complete test set (CTS) achieved
through symbolic execution. The rationale for the study is
defined according to existing studies, considering their pros
and cons, and the key concepts that will be used to achieve a
desirable result are provided.

The main outcome is the algorithm that determines for any
two programs written in the proposed process description
language CPL-1, whether incorrect concurrent execution is
possible and, if possible, constructs a concurrent execution
scenario, input data, and resource values that will lead to
incorrect execution of processes. This makes it possible to
determine whether it is possible to assign the highest level of
concurrency, if incorrect execution is not possible, or if such a
possibility is revealed, the implementation of the business
process needs to be corrected by eliminating the risks
identified (close to [23] idea). To sum up, analyzing business
processes according to the procedure described allows to
configure transaction processing optimally.

In the future, the proposed mechanism will be extended
and implemented. An automatic solution is planned to be
proposed to detect the possibility of incorrect result of
concurrent execution of business processes, which should be
easily applied to relatively simple but most classical business
processes. This would allow the concurrent execution of
processes that are certainly worth using without being afraid
of the incorrect outcome. This also does not require resource-
consuming activities to be carried out at the time of business
process execution, that usually is solved by means of a
mechanism establishing and managing communication
between transactions that may fail in many cases.

ACKNOWLEDGMENT

 The research leading to these results has received funding
from the research project "Competence Centre of Information
and Communication Technologies" of EU Structural funds,
contract No. 1.2.1.1/18/A/003 signed between IT Competence
Centre and Central Finance and Contracting Agency, Research
No. 1.6 “Concurrence analysis in business process models".

REFERENCES

[1] J. A. Gohil, K. A. Popat, P. M. Dolia, “Comparative study and
performance evaluation of JAG_TDB_CC concurrency control
algorithm for temporal database”, In 2019 6th International Conference
on Computing for Sustainable Global Development (INDIACom), 2019,
pp. 548-553, IEEE.

[2] V. R. Kebande, I. Ray, “A generic digital forensic investigation
framework for internet of things (IOT)”, In 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud (FiCloud), pp. 356-
362, 2016, IEEE, doi:10.1109/FiCloud.2016.57

[3] V. R. Kebande, S. Malapane, N. M. Karie, H. S. Venter, R. D. Wario,
“Towards an integrated digital forensic investigation framework for an
IoT-based ecosystem”. In 2018 IEEE International Conference on Smart
Internet of Things (SmartIoT), 2018, pp. 93-98, IEEE, DOI:
10.1109/SmartIoT.2018.00-19

[4] M. J. Islam, M. Mahin, A. Khatun, B. C. Debnath, S. Kabir, “digital
forensic investigation framework for internet of things (IoT): A
Comprehensive Approach”, In 2019 1st International Conference on
Advances in Science, Engineering and Robotics Technology, 2019, pp.
1-6, IEEE, DOI: 10.1109/ICASERT.2019.8934707

[5] Z. Wu, A. Abbas, X. Chen, S. U. J. Lee, “Classification of concurrent
anomalies for iot software based support vector machine”, Journal of
Theoretical and Applied Information Technology, 96(3), 2018.

[6] K. Hiraga, O. Tatebe, H. Kawashima, “PPMDS: A distributed metadata
server based on nonblocking transactions”, In 2018 Fifth International
Conference on Social Networks Analysis, Management and Security
(SNAMS), 2018, pp. 202-208, IEEE, DOI:
10.1109/SNAMS.2018.8554478.

[7] G. Thakur, K. Sparks, A. Berres, V. Tansakul, S. Chinthavali, M.
Whitehead ... E. Cranfill (2020). COVID-19 Joint Pandemic Modeling
and Analysis Platform. In Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Modeling and Understanding the Spread of
COVID-19 (pp. 43-52).

[8] R. K. Gostanian, J. E. Ahern, J. E., “Preforming concurrent transactions
in a replicated database environment”, U.S. Patent No. 5,781,910,
1998,Washington, DC: U.S. Patent and Trademark Office.

[9] M. Sheikhan, S. Ahmadluei, “An intelligent hybrid
optimistic/pessimistic concurrency control algorithm for centralized
database systems using modified GSA-optimized ART neural model”,
Neural Computing and Applications, pp. 1815-1829, 2013.

[10] M. Guzek, G. Danoy, P. Bouvry, “System design and implementation
decisions for paramoise organisational model”, In 2013 Federated
Conference on Computer Science and Information Systems, 2013, pp.
999-1005, IEEE.

[11] D.Agrawal, A. El Abbadi, A. K. Singh (1993). Consistency and
orderability: Semantics-based correctness criteria for databases. ACM
Transactions on Database Systems (TODS), 18(3), 460-486.

[12] R. H. Carver, Y. Lei, “A general model for reachability testing of
concurrent programs”. In International Conference on Formal
Engineering Methods, 2004, pp. 76-98, Springer, Berlin, Heidelberg.

[13] S. M. Melo, J.C. Carver, P. S. Souza, S. R. Souza, “Empirical research
on concurrent software testing: A systematic mapping study”,
Information and Software Technology, 2019, pp. 226-251.

[14] M. Balser, “Verifying concurrent systems with symbolic execution:
temporal reasoning is symbolic execution with a little induction”, 2006.

[15] N. Rungta, E. G. Mercer, W. Visser, “Efficient testing of concurrent
programs with abstraction-guided symbolic execution”, In International
SPIN Workshop on Model Checking of Software, 2009, pp. 174-191,
Springer, Berlin, Heidelberg.

[16] S. Lütolf, S. ANSI SQL Isolation Levels. A Summary of the Original
Paper “A Critique of ANSI. Version 2.1;
https://wiki.hsr.ch/Datenbanken/files/Paper_ANSI_SQL_Isolation_Leve
ls_Stefan_Luetolf_V2_1.pdf, 2014

[17] V. J. Marathe, V. M. Luchangco, “System and method for
communication between concurrent transactions using transaction
communicator objects”, U.S. Patent No 8,473,952, 2013.

[18] Microsoft SQL Docs. Concurrency Control (2017) available:
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-
app/concurrency-control?view=sql-server-2017

[19] A. P. Tolmach, A. Appel, “Debuggable concurrency extensions for
standard ML”. ACM SIGPLAN Notices, 1991, 26(12), pp. 120-131.

[20] J. Bicevskis, G. Karnitis, “Testing of execution of concurrent processes”,
In Proceedings of the 2020 conference on Databases and Information
Systems XIV, DB&IS'2020 (in print).

[21] N. Tillmann, J. De Halleux, “Pex–white box test generation for. net. In
International conference on tests and proofs”, 2008, pp. 134-153.
Springer, Berlin, Heidelberg.

[22] S.E. Conry, R.A. Meyer, V.R. Lesser, “Multistage negotiation in
distributed planning”, In Readings in distributed artificial intelligence,
1988, pp. 367-384. Morgan Kaufmann.

[23] K. Hiraga, O. Tatebe, H. Kawashima, “Scalable distributed metadata
server based on nonblocking transactions”, J. UCS, pp. 89-106, 2020.

