
Data Quality Model-based Testing of Information

Systems: the Use-case of E-scooters

Anastasija Nikiforova

Faculty of Computing

University of Latvia

Riga, Latvia

Anastasija.Nikiforova@lu.lv

Janis Bicevskis

Faculty of Computing

University of Latvia

Riga, Latvia

Janis.Bicevskis@lu.lv

Zane Bicevska

DIVI Grupa Ltd

Riga, Latvia

Zane.Bicevska@di.lv

Ivo Oditis

DIVI Grupa Ltd

Riga, Latvia

Ivo.Oditis@di.lv

Abstract- The paper proposes a data quality model-based testing

methodology aimed at improving testing methodology of

information systems (IS) using previously proposed data quality

model. The solution supposes creation of a description of the data

to be processed by IS and the data quality requirements used for

the development of the tests, followed by performing an

automated test of the system on the generated tests verifying the

correctness of data to be entered and stored in the database. The

generation of tests for all possible data quality conditions creates

a complete set of tests that verify the operation of the IS under all

possible data quality conditions. The proposed solution is

demonstrated by the real example of the system dealing with e-

scooters. Although the proposed solution is demonstrated by

applying it to the system that is already in use, it can also be used

when developing a new system.

Keywords— complete test set, data quality model, e-scooters,

Internet of Things, IoT, Internet of Vehicles, model-based testing,

symbolic execution.

I. INTRODUCTION

Software correctness is an issue that has been debated
since the beginning of programming. Although at the
beginning software testing meant a testing together with
debugging, testing as a separate and independent step
appeared only in the 70s. Nowadays, the main goal of most
studies on software testing is to provide reliable software that
could be used in everyday life, but, this goal is not succeeded,
yet. Despite numerous resources are spent on testing, errors
and bugs in software still causing system failures. In addition,
software testing is often done manually because its automation
appears to be sufficiently complex and as a result, the level of
effectiveness of such a testing is low [1], [2].

The study launched aims to propose a new technology for
testing and software development that would take a step
towards the main objective of developing technology for
reliable software development. The study addresses related
topic by covering just one specific part of an information
systems (IS) that nevertheless is one of the main tasks – the
correctness of input messages which are inserted and their
correct allocation in database. This part is very vital since this
is followed by various different tasks which depend on the
stored data. The main idea of the approach is: (a) first, the
description of the data to be processed by IS and its processing
rules are developed; they are further used to develop a
complete set of tests, (b) then, an automated test of the system
on the generated tests is performed verifying the operation of
the IS under all possible data quality conditions [3]. This

allows to complement traditional software testing with
automated checks of compliance of data entered as a result of
automated business processes and stored in a database. This
aimed to improve the complete testing methodology of IS
using business process and data quality models. The proposed
solution can be applied to both, software that is being
developed and already in use.

The idea of the proposed solution is close enough to the
philosophy of model-based testing (MBT) - a testing model
that is further used to prepare tests is created. When testing the
program on these tests, the correct operation of the program on
these tests shall be achieved. One of the main tasks in MBT is
to find a model that would express the behaviour of the
program in detail. The previous document on this study [3]
suggested to use a “black box” testing method based on a test
of all requirements put forward the program. Since in the case
where the requirements are defined in the natural language,
misunderstandings are possible, it is important to define these
requirements very precisely, which can be achieved through
the use of domain specific languages (DSLs). In addition, the
use of DSL makes it possible to undertake full/ complete
testing. Thus, the previously proposed data object-driven data
quality model, defined using graphical DSLs [4], has been
adapted to this study.

While the first steps towards this idea were already
proposed in [3] covering key concepts of the solution to be
developed, motivating their choice among a wide range of
alternatives, this paper is a next step towards an idea,
proposing more detailed and clarified vision of the key
elements, detailed architecture of the proposed solution,
demonstrating all the concept on a real-life example. This
paper aims to provide an algorithm that would allow a
complete set of tests from the system model to be tested, more
precisely, part of the system, and to check the operation of the
system under these tests. The topicality of this study is
demonstrated through addressing very specific example –
electric scooters (e-scooters).

Electric scooters, which popularity continuously increases
in recent years all around the world, are an example of Internet
of Things (IoT) devices or even more specifically Internet of
Vehicles that allows demonstrating wide possibilities of the
proposed solution. The proposed idea focusing mainly on data,
become even more clear when we speak about e-scooters
which together with their riders’ smartphones continuously
generating data from integrated sensors, which are transmitted
to the systems of the companies that own them. Data regarding

the location of each connected vehicle, how long each ride
takes, which docks need to be restocked, and which ones are
full are always available in real time. However, it is also
known from our own experience, and from the news and
studies that this invention brings a lot of challenges that need
to be addressed and solved. This study cover issues related to
data obtained from e-scooters [and smartphones], which may
be inaccurate and noisy.

The paper addresses the following issues: a review of
related studies (Section 2), a description of the solution
(Section 3), a use-case of e-scooters (Section 4), and
conclusions (Section 5).

II. RELATED WORKS

A. Researches on Data Quality

The data quality topic is often addressed separately from
testing. There are known studies covering and extending ISO
quality standards, such as adapting it to IoT, sensor data, etc.
and provides a detailed a state-of-the-art analysis [5]-[8],
therefore, this study will not repeat this discussion. In addition,
our previous studies covered the topic of data quality without
linking it to the testing of information systems as well.

This time it was decided to propose a testing approach
based on a previously proposed data quality model [9]-[11]
called DQ-model-based testing (DQMBT). As follows from
the title of the proposed testing approach, it belongs to model-
based testing methods. This topic was briefly discussed in [3]
and will not be addressed here, focusing on another most
specific topic, more precisely symbolic execution and on
existing studies on symbolic model-based testing, which
underpins the proposed approach.

B. Symbolic Execution and Symbolic Model-based testing

While the symbolic execution was invented in the late 70s
[12], it remains popular and widely used. This study is not an
exception, so let us briefly discuss the concept of symbolic
execution and symbolic model-based testing. It is a well-
known fact that system can have an infinite number of
possible states, input data, possible behaviours etc. Therefore,
some studies decide to cover some part, hoping that it will be
enough, however, this is a very risky choice. Therefore,
another option is to find possibilities to cover set of infinite
input values, states etc. Here comes symbolic execution
which reduces the number of possible paths by associating
classes of inputs.

According to [13], the first goal of symbolic execution is
to explore the possible execution paths of an application. The
difference between symbolic execution and informal testing
with sample input values is that the inputs in symbolic
execution are symbols representing classes of values. For
example, if a numeric value is expected by the application, a
generic representing the whole set of numerical values is
passed. Obviously, the output of the execution will be
produced as a function of the introduced input symbols.
Solving path condition equations is crucial both for the
symbolic execution itself and for test case generation. During
symbolic execution it is be necessary to constantly evaluate

the path condition equations in order to decide whether the
control path being explored is feasible or not. In the case (1) if
there is no solution to the equations at some moment, the path
is infeasible, however, (2) for each reachable/ feasible
control path the path condition provides the relation between
input variables that will direct execution through that
particular path - test case generation occurs. If it is possible to
generate values that satisfy that relation, then it is possible to
extract a test case. By finding solutions to the equations that
describe control paths it is possible to extract values that can
be used as testcases. These values will clearly force the
application to follow the control path that defines that path
condition (also in line with [13]).

Test generation using symbolic execution is commonly
divided into two groups – static and dynamic. Static test
generation consists of analysing a program statically, by using
symbolic execution techniques to attempt to compute inputs to
drive particular program along specific execution paths or
branches, without ever executing the program. [14] states that
static test generation is doomed to perform poorly whenever
precise symbolic execution is not possible. Unfortunately, this
is frequent in practice due to complex program statements
(pointer manipulations, floating-point operations, etc.) and
calls to operating-system and library functions that are hard or
impossible to reason about symbolically with good enough
precision. At the same time, dynamic test generation consists
of executing the program, typically starting with some random
inputs, while performing symbolic execution dynamically,
collecting symbolic constraints on inputs gathered from
predicates in branch statements along the execution, and then
using a constraint solver to infer variants of the previous
inputs in order to steer the next execution of the program
towards an alternative program branch. This process is
repeated until a given final statement is reached or a specific
program path is executed. Dynamic test generation can be
viewed as extending static test generation with additional
runtime information, and is therefore more general, precise,
and powerful. However, it is obvious that it is more resource
consuming compared with the static execution. The list of
examples of both, dynamic and static test case generators are
available in [14]. Our study uses static test case generation as
it satisfies the aim of the proposal.

Now, let us briefly cover some studies on symbolic model-
based testing. For instance, [15] presents a technique for the
automatic generation of real-time black-box conformance tests
for non-deterministic systems, where timed automata with a
dense time interpretation cannot be analysed by finite state
techniques, since the timed transition system associated with it
has infinitely many states. Therefore, authors gave their
preference to symbolic execution, in order to analyse the
specification, to synthesize the timed tests, and to guarantee
coverage with respect to a coverage criterion that are found by
authors as the most efficient way dealing their issue. They
present an algorithm and data structure for systematically
generating timed Hennessy tests that ensures that the
specification will be covered such that the relevant Hennessy
tests for each reachable equivalence class will be generated.
To compute and cover the reachable equivalence classes, and
to compute the timed test sequences, they employ symbolic

reachability techniques based on constraint solving (adapted
for model checking of timed automata). One of the specific
notes should be mentioned here, that in addition to other
known advantages of symbolic execution, authors mention
that symbolic execution is much less sensitive to the clock
constants and the number of clocks appearing in the
specification compared to the region construct. As a result, a
prototype was developed proving by an example that resulting
test suite is quite small (finite), and is constructed quickly, and
with a reasonable memory usage demonstrating advantages of
symbolic execution.

According to [13], there are different ways for test case
generation, more precisely, abstract model-based test case
generation and code-based test case generation. As for
abstract model-based test case generation, these studies start
from an abstract specification and perform searches through
the execution state space of the specified application by using
a constraint logic programming language [13]. This search is
done in a symbolic fashion in the sense that each state of the
model corresponds not to a single concrete state but rather to a
set of constrained model input variables. The constraints for
the model input variables at a given state are calculated by
symbolically executing the path until that state. Here, [16] can
be mentioned as an example applying this idea to a specific
case of smart cards and boundary testing idea [17]. As for
code-based test case generation, as it follows from the name of
this approach, test cases are generated directly from a real
code. In this case, the model does not exist explicitly and is
provided implicitly with the temporal logic formulas. The
expected correct and incorrect behaviours of the
implementation are described by the test engineer using
temporal logic. The simple fact that the witnesses or counter
examples to these formulas exist already provides information
about the correctness of the implementation. This approach is
less popular due the fact it has a list of disadvantages (see
[13]).

There are also known studies proposing enabling symbolic
test generation for input/ output automata [18]. [19] proposes a
complete formal framework for symbolic testing which aims
to overcome a list of challenges, including the loose of
structure and information available in the data definitions and
constraints, and to avoid infamous state space explosion
problem, which limits the usability of test generation tools that
are met when the symbolism does not take place. Authors
underline that the introduction of symbolism avoids the state-
space explosion during test generation, and it preserves the
information present in data definitions and constraints for use
during the test selection process. As a result, sioco - fully
symbolic version of ioco (input/ output conformance) is
proposed that turned out to be an improved version of the
initial version (ioco) because of symbolism.

To sum up, it is concluded that symbolic execution can be
used with both, abstract and concrete models, and it is found
to be suited for the study presented since it allows to perform
complete testing of the particular part of the system.

III. DATA QUALITY MODEL-BASED TESTING

A. Data Quality Model as a Testing Model

The proposed solution is based on the use of data object-
driven data quality model previously proposed in [4], [9]-[11].
This model proved to be simple and effective enough that was
proved by a cycle of studies (see [11]). Its effectiveness was
demonstrated by applying it on the real open data identifying
their data defects, despite the different structures of data sets
and the complexity of data. Let us briefly cover main
components that together constitute the data quality model,
emphasizing key points in scope of the given study:

1) data object - a set of attribute values that characterize
one real object that defines the data to be analysed. A
data object can be primary, secondary, and sub-
object. A collection of data objects of the same
structure forms a data object class.

The creation of data object in this study is performed
twice: (1) for data correctness analysis, by performing
mainly syntactic check in the scope of one data object,
(2) for data correct allocation in the DB, by analysing
this in scope of multiple data objects extracted from
the database, where data object received at the first
step is considered to be a primary, but those, which
are extracted from the database – secondary data
objects, where both primary and secondary data
objects can have an arbitrary number of sub-objects.

As in [4] the address for the attribute value of a single
data object is <dataObjectName.attributeName>. This
address is used at the stage of determining data quality
requirements;

2) data requirements/ conditions that determine the
conditions that must be met to admit the data as
qualitative. Requirements regarding attributes of a
data object are used to prepare/ generate test cases,
which would cover all correct and incorrect inputs.

Both components are represented by their own graphical
Domain Specific Language (DSL). Since they have proved its
applicability to these tasks, they are refined in the case of this
study (in line with [20]). In scope of this study this DQ- model
is even more suited since these tasks are supposed to be
performed by IT-specialists who will gain profit of a graphical
data quality model but also reducing the risk of incorrect
models which previously should be done by “clever users”. In
addition, data quality model is not related to the information
system that has accumulated data.

According to [3], the database (DB) is checked before and
after data insertion. Before inserting data, the DB should be
checked to make sure that a particular insert is possible. At
this stage, only read operation is performed. After data entry,
the data object corresponding to the DB is read and compared
with the input data. In case of differences, an invalid data
entry is identified. Thus, data entry into the DB is controlled
by an external procedure, that, after receiving the message that
needs to be entered, checks the preconditions for execution
before data is entered into the database and checks whether
this has happened correctly in the database after data entry.

When data objects and conditions for input message, the
data objects retrieved from the database are defined and the
conditions that apply to these data objects are applied, a test
generation step is taken. However, the test generation is only
possible after selection of test selection criteria. Different
testing models and their coverage can be selected as a
criterion. Since we are mainly discussing one specific testing
objective, we limit the remaining components to this specific
purpose and involve very specific criteria – (1) to verify
whether the data to be entered is correct and (2) whether they
have been correctly allocated in the database without
contradictions to internal constraints. Thus, the criterion when
system under test (SUT) can be considered to be sufficiently
tested is the full coverage of defined data quality
requirements/ conditions.

B. Algorithm

The proposed algorithm uses a data quality model (DQ-
model) as a testing model and is able to generate a DQ-
complete test set (CTS). Its main steps are:

• step 0: creating DQ-model covering both, input
messages and data retrieved from the database
(according to previous subsection);

• step I: data quality conditions defined in flowcharts
are expanded in a tree-like format;

• step II: for each tree branch, the condition for its
feasibility/ reachability shall be established by means
of symbolic execution;

• step III: resolving the conditions for branch
reachability results in tests, containing both, input data
values, data objects (database) content, branch
execution results. The obtained test set is a DQ-
complete test set that ensures testing of all conditions
and the results to be stored in the database.

The general architecture of the proposed solution is shown
in Fig. 2. As was already stated in [21], the main actions are
carried out by a “Test generator” using DQ-model to generate
test “Input data”, “Database content” (data objects for data
retrieved from DB) and two protocols – (1) “Input data test
protocol (expected)” and (2) “Database content (expected)”.

Fig. 1 Software verification procedure.

The SUT is executed with generated test Input data after
the “Database content” generated by the “Test generator” has
been entered in the database. The results of the SUT execution
are recorded in the “Input data test protocol (real)” and the
content of the data objects (database) are read after testing the
SUT with generated test input data. The “Input data test
protocol (real)” must coincide with the “Input data test
protocol (expected)” generated by the “Test generator”,
although there are possible differences in formatting and texts.
Expected values are considered benchmarks with which real
values are compared. If these two protocols coincide with each
other, it is assumed that the SUT is operating according to the
DQ-model, otherwise both protocols are sent to IS developers
for further investigation of reasons of differences, which may
indicate (a) errors in the SUT or (b) differences in the DQ-
model from programmers’ programs. In the first case, the error
is detected and must be corrected, in the second case, the
model must be re-checked and improved to eliminate the
differences found.

As for a test suite, the given study supposes symbolic test
suite that is execution of data quality requirements (its
suitability for complete testing is discussed in [22]). For each
case of the requirements, the conditions of the requirements
are established which, when resolved, result in specific tests
which further test the system.

The positive point of this choice is that the finite number
of tests can be performed to cover infinite set of possible
cases. A test suite is considered to be complete with respect to
a specific fault model, if a system under test whose behaviour
conforms to the reference model passes all test cases (called
soundness), and every non-conforming system under test fail
at least one test case (called exhaustiveness) [23]. It is clear
that to ensure soundness of the produced tests, symbolic
reachability analysis is needed to select only states for testing
that are reachable, and to compute only timed traces that are
actually part of the specification (in line with [13]).

To sum up, the proposed approach uses a formal
executable specification, which generates the DQ-complete
test set and the expected results of its execution or
benchmarks. It means, that when automated testing of the SUT
is performed, the tester should only compare the results
obtained with the expected benchmarks. A more detailed
overview of these steps is demonstrated in the next Section on
the real-life example.

IV. DQMBT APPROBATION ON THE E-SCOOTER SYSTEM

The solution proposed is applied to one particular local
system of e-scooters we deal with. E-scooters are becoming
more and more popular for a variety of purposes that are not
limited to individuals but also for other purposes, such as
supply of goods [24], [25] worldwide and also in Latvia.
However, with significant benefits, such as the absence of
emission, silence, relatively small sizes, they are also
characterised by some limitations. There are many topics
addressing issues related to the deficiencies and use of e-
scooters, starting with their unsafety, traffic offences etc. In
addition, some authors argue for data quality issues observed
in the collected data such as [26], where the error rate of data,

in the sample of 300 records, is 3%. This is not a surprise,
especially given that in the case of e-scooters, data are
collected from a number of sources – users smartphones,
sensors, which are then transmitted in a system for which a
proposed DQMBT approach can been applied. The system
under test in the scope of this study is not an exception. The
nature of e-scooters requires the collection and storage of
every usage and user data. The challenge here is the huge
amount of data need to be processed, however, the advantage
is that data collected in the most cases is structured or semi-
structured.

Two the most well-known problems that were identified by
our own (for the system we deal with) are (1) inaccurate data
on the charge of scooters which may exceed 100% or may
change over few second by such a high number of percent that
cannot be true (from 80% to 20% and then to 78%), (2)
inaccuracies in data received from sensors, more precisely,
according to these data, in one time interval e-scooter may be
transported in thousands kilometres from its current position
that cannot be true. However, whether these issues are single?
what if there are many other issues have not noticed, yet? It is
clear that it is not enough to base conclusions on the IS system
on observations only and mechanism should be involved
controlling this. While the solution is a new technology for
testing and software development, this example covers the
case when already developed system is under test, however, it
can be used while developing a new system as well. Let us
demonstrate the proposed algorithm step by step.

A. Step 0: Creating DQ-model

According to the data quality model used, the first step is
to create data objects (Fig. 2) that are (1) Scooters with its sub-
object Ride, (2) Customers with its sub-objects (2a) Cards and
(2b) Payments, (3) 3 input messages – (3a) “Scooter
Heartbeat”, (3b) “Ride:Start” and (3c) “Ride:Finish” received
from a scooter at specific stages of the ride, i.e, when the ride
begins, during the ride and when it completes, affecting the
nature of data obtained from the scooter and its allocation in
the database. In real circumstances, the proposed approach is
supposed to process data simultaneously from both a
smartphone and an e-scooter (only data from e-scooter is
under analysis at this time).

Fig. 2. Data objects.

Fig. 3. Data quality specification.

However, as the system is complex enough and many
different cases need to be addressed, in this paper we show
only one simplified example when the data on the particular
ride is collected, more precisely - InputMessage “Scooter
Heartbeat” in the way of input messages.

The example above analyses the correctness of the data in
the InputMessage “Scooter Heartbeat” data object, however,
database data objects can be analysed as well. These checks
are simple enough, but it is clear that the verification of the
data to be entered is insufficient. Thus, conditions for the
correct distribution of data in the database are defined to
perform semantic/ contextual checks (Fig. 3), such as:

• whether a scooter to whom inputMessage applies
exists in the database (by means of ScooterID), that is
checked by verifying whether Scooter.ScooterID =
inputMessage.ScooterID;

• whether a new instance has been added to the Scooter
data object BatteryLevel data item with a
corresponding Charge value, which is also between 0
and 100% (positive or “0”) and will decrease (higher
2%) or equal to the value previously read since scooter
is discharging during the ride (3 checks are hidden
here – see the 2nd and 6th boxes of Fig. 3). This is
found by looking at the previous record, by addressing
it through ScooterID un RideID that is found by using
getPrevious() function (SQL uses LAG function for
this purpose). This value is important for the
BatteryStatus attribute since if it is between 0 and 45,
the status will be “need to be plugged”, if greater
(46..100) – “OK”;

• whether there is a ride to whom inputMessage applies
- RideID of the Scooter sub-object Rides, that is
checked by verifying whether Rides.RideID =
inputMessage.RideID;

• whether a new Speed value is between 0 and 80 and is
greater than the value of the Scooter data object
MaxSpeed value – if yes, the MaxSpeed value of
Scooter data object (Rides sub-object) should be
replaced by Speed value of inputMessage, otherwise,
it is ignored (5th and 9th boxes in Fig. 3).

When both data objects (Fig. 2) and data requirements/
conditions (Fig. 3) are prepared (the step 0 is completed), the
DQ-model used to generate tests is derived from them. The
nature of all models and checks is in line with the needs we
identify using the SUT. This also means that, depending on the
system, other more or less specific requirements may be
required.

B. Step I: Expanding DQ-model into a Tree

The next step is to expand the data quality conditions in
the flowcharts of a tree-like format (Fig. 4). Branch vertexes
contain numbers numbering paths, which in the scope of the
demonstrated example are 11.

6 of them test the syntactical and contextual correctness of
input data (#2-7 nodes), 4 of them test data allocation in the
database (#8-11) and another 1 branch #1 represents the
correct data processing from syntactical checks of input data
to data correct retention in the database.

Every path is in START..END form, the contents of which
for 5 branches are presented in Table 1 and are obtained from
Fig. 4. Since the test criterion is based on the requirement that
all data quality transitions must be walked through, the total
number of tests is equal to the number of vertexes – 11. Tests
should be developed based on the test criterion, walking along
all identified branches. This is done by applying symbolic
execution to commands in conditional flowcharts.

C. Step II: Reachability of Branches

The conditions for reaching the branches are derived from
the expansion of data quality conditions in the tree (Fig. 4 and
Table 1). The conditions for 5 paths of Table 1 are provided in
Table 2 demonstrating different cases, where (a) data input
and retention in the DB were correct (path #1), (b) input data
was invalid (path #2, #5, #6) and (c) allocation of data items in
the database was unsuccessful because the corresponding
RideID was not found in the Customers data object.

Fig. 4. DQ-model expansion into a tree.

TABLE I. DATA QUALITY EXPANSION IN A TREE

Path Branch

1 START => Check ScooterID => YES => Check Charge => YES

=> Check CurLocation => YES => Check RideID => YES =>

Check Speed => YES => Check Charge Insert => YES => Check

CurLocation Insert => YES => Check RideID Insert => YES =>

Check Speed Insert => YES => SEND Message(1) => END

2 START => Check ScooterID => YES => Check Charge => YES

=> Check CurLocation => YES => Check RideID => YES =>

Check Speed => NO => SEND Message(2) => END

… …

5 START => Check ScooterID => YES => Check Charge => NO

=> SendMessage(5) => Check CurLocation => YES => END

6 STRAT => Check ScooterID => YES => Check Charge =>

SendMessage(5) => NO => Check CurLocation => NO =>

SendMessage(4) => END

… …

11 START => Check ScooterID => YES => Check Charge => YES

=> Check CurLocation => YES => Check RideID => YES =>

Check Speed => YES => Check Charge Insert => Check

CurLocation Insert => YES => Check RideID Insert => NO =>

SEND Message(9) => END

TABLE II. CONDITIONS FOR BRANCHES

Path Condition

1 1) exist Scooters(instScooter) where (Scooters.ScooterID =

inputMessage.ScooterID)

2) valid Value inputMessage.Charge

3) valid Value inputMessage.CurLocation

4)exist Scooters(instScooter).Rides(instRide) where

Rides(instRide).RideID= inputMessage.RideID

5) valid Value inputMessage.Speed

6) Scooters(instScooter).BatteryLevel= inputMessage.Charge

7) Scooters(instScooter). Location= inputMessage.curLocation

8) exist Customers(instCustomer).Payments(instRide) where

Payments(instPayment).RideID= inputMessage.RideID

9) if(Scooters(instScooter).Rides(instRide) where

Rides(instRide).MaxSpeed < inputMessage.Speed)

Rides(instRide).MaxSpeed= inputMessage.Speed

2 1) exist Scooters(instScooter) where (Scooters.ScooterID =

inputMessage.ScooterID)

2) valid Value inputMessage.Charge

3) valid Value inputMessage.CurLocation

4)exist Scooters(instScooter).Rides(instRide) where

Rides(instRide).RideID= inputMessage.RideID

5) invalid Value inputMessage.Charge

5 1) exist Scooters(instScooter) where (Scooters.ScooterID =

inputMessage.ScooterID)

2) invalid Value inputMessage.Charge

3) valid Value inputMessage.CurLocation

6 1) exist Scooters(instScooter) where (Scooters.ScooterID =

inputMessage.ScooterID)

2) invalid Value inputMessage.Charge

3) invalid Value inputMessage.CurLocation

11 1) exist Scooters(instScooter) where (Scooters.ScooterID =

inputMessage.ScooterID)

2) valid Value inputMessage.Charge

3) valid Value inputMessage.CurLocation

4) exist Scooters(instScooter).Rides(instRide) where

Rides(instRide).RideID= inputMessage.RideID

5) valid Value inputMessage.Speed

6) Scooters(instScooter).BatteryLevel= inputMessage.Charge

7) Scooters(instScooter). Location= inputMessage.curLocation

8) exist Customers(instCustomer).Payments(instRide) where

Payments(instPayment).RideID >< inputMessage.RideID

TABLE III. DATA OBJECT INPUTMESSAGE “SCOOTER HEARTBEAT”

Test

Scooter

ID

Charge Cur

Loc

Ride

ID

Speed Msg.

1 scooter-1 charge-1 loc-1 ride-1 speed-1 1

2 scooter-2 charge-2 loc-2 ride-2 speed-2

invalid

2

3 scooter-3 charge-3 loc-3 ride-3

invalid

- 3

4 scooter-4 charge-4 loc-4

invalid

- - 4

5 scooter-5 charge-5

invalid

loc-5 - - 5

6 scooter-6 charge-6

invalid

loc-6

invalid

- - 5, 4

7 scooter-7

invalid

- - - - 6

8 scooter-8 charge-8 loc-8 ride-8 speed-8 10

9 scooter-9 charge-9 loc-9 ride-9 speed-9 7

10 scooter-

10

charge-10 loc-10 ride-10 speed-10 8

11 scooter-

11

charge-11 loc-11 ride-11 speed-11 9

This is used in the scope of the 2nd step of the presented
algorithm – for each tree branch, the condition for path
feasibility shall be established by means of symbolic execution
(partly covered in the next subsection).

By resolving the conditions for path feasibility in all 11
cases, test input data and data objects content are obtained on
which full coverage of the conditions of the data quality model
can be obtained by the execution of these conditions.

D. Step III: Preparing a DQ-complete Test Set

The test generator prepares tests, unless otherwise
specified in the conditions, with unique values. They are
provided in Table 3 with symbolic names (‘-’ refers to the lack
of the need to define the symbolic value as this attribute is not
covered in the particular test). The content of data objects for
all 11 branches is provided. Table 3 representing
InputMessage is divided into 2 parts – (1) syntactic checks
(tests #1..7) and (2) data allocation in the DB (tests #8..11).

Verification of context conditions is ensured by including
instances with relevant key values in data object. For instance,
in order to ensure the Check ScooterID check in all 11 tests,
the Scooter data object includes 10 instances with different
key values (scooter-1, scooter-2, ...scooter-6, scooter-8,...,
scooter-11), but for the 7th test, Scooter data object does not
contain an instance with an appropriate key value. Similarly,
the Rides data object contains 6 instances with key values
corresponding to tests, i.e. ride-1, ride-2, ride-8, ride-9, ride-
10 and ride-11. Attribute values for syntactic checks (tests
#1…7) are generated according to the specification for data
checks, allowing task-specific checks, which in the case of
provided example are Check Location, Check Speed etc.

The generated test set and data object values are the DQ-
complete test set. Because the DQ-model is executable, its
execution with a DQ-complete test set (input data and
database generated content) will result in a protocol that
appears in Table 4.

TABLE IV. TESTING RESULTS

Path

Message

Message text

1 1 successful input: <scooter-1, charge-1, loc-1, ride-1,

speed-1>

2 2 input error: invalid speed < scooter-1, charge-1, loc-

1, ride-1, speed-1>

3 3 input error: invalid RideID <scooter-3, charge-3, loc-

3, ride-3>

4 4 input error: invalid CurLocation <scooter-4, charge-

4, loc-4>

5 5 input error: invalid Charge <scooter-5, charge-5>

6 4 input error: invalid CurLocation, Charge < scooter-

6, charge-6, loc-6>

7 6 input error: invalid ScooterID <scooter-7>

8 10 database error: Speed is not inserted <scooter-8,

charge-8, loc-8, ride-8, speed-8>

9 7 database error: Charge is not inserted <scooter-9,

charge-9>

10 8 database error: curLocation is not inserted <scooter-

10, charge-10, loc-10>

11 9 database error: RideID is not inserted <scooter-11,

charge-11, loc-11, ride-11>

It covers all cases in which testing we were initially
interested in, detecting defects including the above mentioned,
more precisely, inaccurate data on charge and current location.

If the SUT is tested with a prepared generated complete set
of tests, the result must, in substance, correspond to the result
of the execution of the DQ-model. Thus, it can be argued that
the test objective has been achieved – the tested item has been
tested with input data ensuring that all data quality conditions,
and the DB content are checked. This also means that the
tester does not have to prepare the test by himself and perform
the execution of the SUT with them, thus, the quality of
testing does not depend on the qualification of the tester, but
on the quality of the DQ-model, i.e. how accurate the testing
model meets the requirements of the system.

V. CONCLUSIONS

The paper proposes the Data Quality Model Based Testing
(DQMBT) approach of IS, that uses previously proposed data
quality model as a testing model by demonstrating it through
specific example – the system of e-scooters that is currently in
use. The proposed solution is based on the new specific
criterion of a complete testing verifying the correctness of all
input data and their retention in the DB with tests containing
all possible conditions for input data values. This is achieved
through symbolic execution, which significantly reduces the
number of tests, thereby allowing to perform a finite number
of tests covering [almost] infinite set of possible cases.

The proposed algorithm first checks the compatibility of
the data to be entered into the system with the syntactical and
contextual conditions, defined in DQ-model. Correct data are
stored in data objects. They shall then be checked for
compliance with the input data, by which the correctness of
data retention is tested. Thus, the data are examined (1) first as
the compliance of the input data with the syntax and context
conditions, (2) whether the data are correctly stored in the
database and the stored data corresponds to those entered. The

proposed DQMBT approach uses a formal executable
specification, generating the DQ-complete test set and the
expected results of its execution. When automated testing of
the system is completed, the tester should only compare the
results obtained with the benchmarks. It is obvious that the
proposed approach differs vitally from the test process when
the tester prepares test cases based on an informal
specification, his own experience or intuition without an exact
and precise specification of the operation of the system. It also
significantly reduces tester involvement and workload.

While the solution is a new technology for testing and
software development, the provided example covers the case
when already developed system is under test. However, it can
be used while developing a new system as well.

This time a limited example of one input message was
demonstrated, however, it is clear that, in the real
circumstances, a number of input messages from different
sources (e-scooter, smartphone etc.) may come in the system
[almost] simultaneously and their sequence/ order affects the
testing process and results. Therefore, further studies will
address this question by demonstrating how the proposed
approach applies to a number of input messages. The
quantitative results of the application of the proposed approach
to the IS of e-scooters, compared to the testing technique
currently in use, will also be provided in the further studies.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the research project "Competence Centre of Information
and Communication Technologies" of EU Structural funds,
contract No. 1.2.1.1/18/A/003 signed between IT Competence
Centre and Central Finance and Contracting Agency, Research
No. 1.7 “The use of business process models for full
functional testing of information systems".

REFERENCES

[1] S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, S. H. Ameerjan,
“Towards execution time prediction for manual test cases from test
specification”, In 43rd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2017, pp. 421-425. IEEE.

[2] V. Garousi, M. V. Mäntylä, “When and what to automate in software
testing? A multi-vocal literature review”, Information and Software
Technology, 76, 2016, pp. 92-117.

[3] A. Nikiforova, J. Bicevskis, “Towards a Business Process Model-based
Testing of Information Systems Functionality”, In Proceedings of the
22nd International Conference on Enterprise Information Systems
Volume 2: ICEIS, 2020, pp. 322-329, DOI: 10.5220/0009459703220329.

[4] J. Bicevskis, A. Nikiforova, Z. Bicevska, I. Oditis, G. Karnitis, “A Step
Towards a Data Quality Theory”. In 2019 Sixth International
Conference on Social Networks Analysis, Management and Security
(SNAMS), 2019, pp. 303-308. IEEE, DOI:
10.1109/SNAMS.2019.8931867.

[5] S. Kim, R. P. Del Castillo, I. Caballero, J. Lee, C. Lee, D. Lee ... & A.
Mate, “Extending Data Quality Management for Smart Connected
Product Operations”. IEEE Access, 2019, pp. 144663-144678,
DOI:10.1109/ACCESS.2019.2945124.

[6] R. Perez-Castillo, A. G. Carretero, I. Caballero, M. Rodriguez, M.
Piattini, A. Mate, ... & D. Lee, “DAQUA-MASS: An ISO 8000-61 based
data quality management methodology for sensor data. Sensors, 2018,
18(9), 3105, https://doi.org/10.3390/s18093105.

[7] R. Casado-Vara, F. de la Prieta, J. Prieto, J. M. Corchado, “Blockchain
framework for IoT data quality via edge computing”, In Proceedings of
the 1st Workshop on Blockchain-enabled Networked Sensor Systems,
2018, pp. 19-24, https://doi.org/10.1145/3282278.3282282.

[8] A. Karkouch, H. Mousannif, H. Al Moatassime, T. Noel, “Data quality
in internet of things: A state-of-the-art survey”, Journal of Network and
Computer Applications, 73, 2016, pp. 57-81.

[9] A. Nikiforova, “Definition and Evaluation of Data Quality: User-
Oriented Data Object-Driven Approach to Data Quality Assessment”,
Baltic Journal of Modern Computing, 8(3), 2020, pp. 391-432.

[10] A. Nikiforova, J. Bicevskis, Z. Bicevska, I. Oditis, “User-Oriented
Approach to Data Quality Evaluation”, Journal of Universal Computer
Science, 26(1), 2020, pp. 107-126.

[11] J. Bicevskis, Z. Bicevska, A. Nikiforova, I. Oditis, “An Approach to
Data Quality Evaluation”, In 2018 Fifth International Conference on
Social Networks Analysis, Management and Security (SNAMS), 2018,
pp. 196-201, IEEE, DOI: 10.1109/SNAMS.2018.8554915.

[12] J. C. King, “Symbolic execution and program testing”, Communications
of the ACM, 19(7), 1976, pp. 385-394.

[13] M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, A. Pretschner, “Model-
based testing of reactive systems”, In Vol. 3472 of Springer LNCS, 2005.

[14] P. Godefroid, “Test generation using symbolic execution”, In IARCS
Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2012.

[15] B. Nielsen, A. Skou, “Automated test generation from timed automata”,
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2001, pp. 343-357. Springer,
Berlin, Heidelberg.

[16] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, K.
Scholl, “Model-based test case generation for smart cards”, Electronic
Notes in Theoretical Computer Science, 80, 2003, pp. 170-184.

[17] B. Legeard, F. Peureux, M. Utting, “Automated boundary testing from Z
and B”. In International Symposium of Formal Methods Europe, 2002,
pp. 21-40, Springer, Berlin, Heidelberg.

[18] V. Rusu, L. Du Bousquet, T. Jéron, “An approach to symbolic test
generation”, In International Conference on Integrated Formal Methods,
2000, pp. 338-357, Springer, Berlin, Heidelberg.

[19] L. Frantzen, J. Tretmans, T. A. Willemse, “A symbolic framework for
model-based testing”, In Formal approaches to software testing and
runtime verification, 2006, pp. 40-54, Springer, Berlin, Heidelberg.

[20] B. Selic, “The theory and practice of modeling language design for
model-based software engineering—a personal perspective”. In
International Summer School on Generative and Transformational
Techniques in Software Engineering, 2009, pp. 290-321, Springer,
Berlin, Heidelberg.

[21] J. Bicevskis, Z. Bicevska, A. Nikiforova, I. Oditis, I. (2020). Data
Quality Model-based Testing of Information Systems. In 2020 15th
Conference on Computer Science and Information Systems (FedCSIS)
(pp. 595-602). IEEE, doi: 10.15439/2020F25

[22] J. Peleska, W. L. Huang, F. Hübner, “Complete Model-based Testing”,
Test, Analyse und Verifikation von Software-gestern, heute, morgen,
2017, pp. 81-92.

[23] A. Spillner, M. Winter, A. Pietschker, “Test, Analyse und Verifikation
von Software–gestern, heute, morgen”, BoD–Books on Demand, 2018.

[24] F. Lia, R. Nocerino, C. Bresciani, A. Colorni Vitale, A. Luè, “Promotion
of E-bikes for delivery of goods in European urban areas: an Italian case
study”, In Transport Research Arena (TRA) 5th Conference: Transport
Solutions from Research to Deployment, 2014, pp. 1-10.

[25] W. Espinoza, M. Howard, J. Lane, P. Van Hentenryck, “Shared E-
scooters: Business, Pleasure, or Transit?”, 2019, arXiv:1910.05807.

[26] A. Brown, N. J. Klein, C. Thigpen, N. Williams, “Impeding access: The
frequency and characteristics of improper scooter, bike, and car
parking”, Transportation Research Interdisciplinary Perspectives, 2020,
https://doi.org/10.1016/j.trip.2020.100099

