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Abstract—Cybersecurity and trustworthiness of IoT devices
are becoming more and more vital. Device attestation is one
approach to increase trust through measured evidence of a
device’s software integrity. However, the lack of integration to
different services still limits the adoption of device attestation
in the IoT world. This paper describes integration of Device
Identity Composition Engine (DICE) -based device attestation
with delegated identity and access management. We present
device attestation extensions to two existing authorization flows
of the widely used OAuth 2.0 framework. These extensions do not
alter the original flows, but they do include attestation evidence
and result within the original message content, simplifying inte-
gration to existing systems. In addition, we describe our prototype
implementation of the solution and present early performance
results measured using a physical IoT device. Furthermore, we
discuss the benefits and challenges of the approach. The goal
of this work is to ease the adoption of device attestation by
simplifying integration to existing IoT systems.

Index Terms—Cybersecurity, IoT, Remote Attestation, Identity
Management, Access Control, OAuth 2.0.

I. INTRODUCTION

Trustworthiness of the Internet of Things (IoT) is becoming
more and more vital for society, industry, and business. Dif-
ferent cyber threats — such as discontinued business due to
ransomware, network and service unavailability due to botnet
disturbances, and accidents due to compromised machinery
and vehicles — motivate the adoption and development of
stronger security solutions for connected devices and connect-
ing networks. There is a need for technologies that assure
trustworthiness (i.e., the high probability that devices behave
as expected) and enable trust (i.e., the acceptance of the
small risk that devices misbehave). However, challenges for
securing IoT are various. The heterogeneous device landscape
means that security management and device updates are more
challenging. Users often have limited experiences, skills, and
resources for security configurations, making security error-
prone. Solutions need to be user-friendly, scalable, and suitable
for resource-restricted devices. At the same time there is a need
for security solutions that support new emerging applications
and can address previously unknown security threats.

The security and trustworthiness of an IoT device depends
on various factors, including the strength and maturity of
applied protocols, security architectures, and standards [1]; se-
curity certification and tests [2] during manufacturing and pro-
curement; and integrity or tamper protection of the executed
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applications by access control and anti-virus solutions. Device
attestation — as specified by the Trusted Computing Group
in Device Identifier Composition Engine (TCG DICE) [3] —
is a security control for assuring the trustworthiness of IoT
devices and the software they are running. Device attestation
is an IoT adaptation of the remote attestation [4], [5] concept.
It proves to service providers that the device is running un-
modified whitelisted and certified software. It lowers the risks
of unexpected malicious behavior and thus enables servers
to make a decision to trust and to provide the service for
the device. However, even though many current IoT devices
already have capabilities to support attestation, it has not been
widely adopted or integrated into IoT systems.

The security of large IoT-based systems depends on the
solutions for managing identities, access permissions, and
software configuration of fleets of devices. Identity and access
management (IAM) is a collection of policies and technologies
ensuring that the correct devices have the appropriate access to
resources and services in the network. For IoT devices there is
currently no single IAM alternative [6] but several alternatives
that have been adopted by different vendors and platforms [7].
The most common IAM standard for web and cloud services
and, due to interoperability, a prominent alternative also for
IoT, is the OAuth 2.0 authorization framework [8]. OAuth 2.0
enables a device to securely obtain limited, delegated access
to a server resource on behalf of the resource owner without
sharing credentials with the device. OAuth 2.0 enables, for
example, that a user who is managing a private network can
authorize a new sensor device to access a network service by
using a web browser or a mobile phone application, as we
demonstrated in a field trial [9]. Some efforts [10], [11] have
enhanced IAM with remote attestation but have not focused
on the requirements of IoT systems.

Our novel contributions are the following. We combine de-
vice attestation with an IAM system for IoT devices. We spe-
cify how the existing OAuth 2.0 authorization framework can
be enhanced with DICE-based device attestation. The achieved
delegation-oriented architecture provides a scalable approach
to manage trustworthiness in distributed environments with a
large amount of sensitive network resources. We describe a
proof-of-concept implementation and performance analysis of
device attestation-enhanced identity management for a micro-
controller class device. We analyze and discuss opportunities,
challenges, and trustworthiness of the resulting architecture for
identity, access, and trustworthiness management.



The rest of this paper is structured as follows. First, in
Section II we describe and discuss our modifications to in-
corporate device attestation into the OAuth 2.0 authorization
framework. In Section III we present a proof-of-concept imple-
mentation of our design and discuss the performance impact
of the modifications. Then, in Section IV we critically evaluate
our approach and its constraints. We also discuss advantages
and potential use cases. In Section V we cover related research
and the differences to our work. Finally, in Section VI we
conclude our paper and propose directions for future research.

II. APPROACH

This section describes our approach for managing identities,
access, and trustworthiness of IoT devices. The approach com-
bines the OAuth 2.0-based identity management and device
attestation, so that verification of device integrity measure-
ments is delegated from individual services to the identity
management infrastructure, while the services are given means
to use the attestation result for their application-specific needs.
We first describe device attestation as a background and then
explain our extensions to two existing OAuth 2.0 authorization
flows — i.e., means to acquire access tokens — to incorporate
remote attestation. The selection of the two protocols is based
on their suitability for IoT devices. They use X.509 certificate-
based authentication rather than, e.g., passwords or other
methods better suited for human users.

A. Device Attestation

In remote attestation [4], [5] an attester, e.g., a device,
produces evidence, i.e., claims of its identity and trustwort-
hiness, for a remote party to support a decision process, e.g.,
an authorization decision. Most often, this relying party does
not have the means to assess the evidence directly, but the
task is given to a trusted verifier that appraises the evidence
according to endorsements of evidence authenticity and ac-
ceptable reference values, producing an attestation result that
the relying party then uses according to its security policies.
Typically, the evidence consists of boot time integrity mea-
surements of loaded software components, and the reference
values are hashes of known good software for the device. The
reference values could be provided, e.g., by a trusted device
manufacturer. Similarly, the manufacturer could vouch for the
device’s capability to securely collect and sign the evidence.

In our approach, remote attestation is based on TCG’s DICE
hardware root-of-trust and Implicit Identity Based Device
Attestation specification [3]. DICE assumes that the device
has a statistically unique device-specific secret (UDS) value
that is used to deterministically derive two asymmetric key
pairs at the device boot. The first key pair, called the device
ID, acts as the device identity. The private key never leaves
the trusted bootloader and cannot be accessed by the device
firmware to ensure that the identity cannot be cloned. The
device certifies the second key pair, called the alias key,
using the device identity key pair. The certificate includes
the integrity measurement of the device firmware so that it
can be used as evidence of device integrity. Typically, an
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Fig. 1. Mutual-TLS based authorization flow with attestation

X.509 certificate is used and the measurements are encoded as
certificate extensions. If an attacker is able to modify or change
the device’s firmware, they cannot forge the integrity evidence
without the device ID private key. The alias key credentials
can be exposed to the device firmware for further use, e.g.,
as TLS client credentials. Furthermore, a trusted party such as
the device manufacturer may certify the device ID public key.
The certificate then functions as an endorsement of integrity of
both the device’s identity and integrity measurement function.

B. Device Authorization

In the OAuth 2.0 standard [8], client authentication and
authorization decisions are delegated to a centralized autho-
rization server. A client that intends to perform an operation
on a resource hosted on a service, called resource server,
requests an access token from the authorization server and
presents it as proof of authorization to the resource server.
The standard defines various authorization flows that specify
concrete steps for different interaction protocols between the
client, the resource owner, and the authorization server to
obtain the access token.

We expect the device to use X.509 certificates and mutual-
TLS authentication-based authorization flow according to
RFC-8705 “OAuth 2.0 Mutual-TLS Client Authentication and
Certificate-Bound Access Tokens” [12] in order to retrieve the
token. We extend this flow by device attestation so that the
device provides evidence of its integrity to the authorization
server as proof of a device’s security state, and the resulting
attestation result is included in the access token.

The authorization flow is illustrated in Figure 1. To highlight
our modifications, the original elements are expressed in gray
whereas the new elements are expressed in darker colors. Also,
the new message content is stated for each message explicitly
in curly brackets. The modifications are as follows.

When the device requests an access token from the autho-
rization server (1), it uses the DICE alias key credentials as
its TLS client credentials. As explained before, the certificate
carries evidence of device’s integrity. The authorization server
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Fig. 2. Device authorization flow with attestation

compares the certificate to its database of registered DICE
device ID certificates to authenticate the device during the TLS
handshake (2). If the authentication is successful and the DICE
certificate extensions are detected, it requests an attestation
service to verify the attestation evidence (3). The attestation
service verifies device integrity by validating the certificate
and comparing embedded integrity measurements against its
reference integrity metric database according to a security
policy (4). The service issues an attestation token containing
the attestation result and returns it to the authorization server.
The authorization server issues an OAuth 2.0 access token
to the device and embeds the attestation token into it as an
additional claim about the client (5).

The device receives the access token and uses it to request
some operation on the resource server (6). The resource server
requests the authorization server to verify the validity of the
access token, including the embedded attestation token (7).
The resource server then processes the device’s request (8).
It may use the attestation token to make application-specific
decisions on the trustworthiness of the device and the data the
device provides.

C. Device Registration

Before the mutual-TLS based authentication and authoriza-
tion flow presented in the previous subsection can be used, a
trust relationship must be established between the device and
the authorization server. That is, the device’s identity and the
corresponding credentials, i.e., the device ID certificate, must
be registered with the authorization server. There are multiple
options on how to achieve this. Here, we discuss one such
method for end-user assisted security bootstrapping of devices.

Our method is based on the RFC-8628 “OAuth 2.0 Device
Authorization Grant” [13] that allows an input-constrained
device to request for end-user authorization to access a pro-
tected resource. This flow uses an end-user code that the device
passes to an end-user as an identifier of a pending authorization
request on the authorization server, which the end-user then

approves. The device uses the flow for authorization to register
its identity with the authorization server. The registration
procedure is implemented as a separate resource server, called
a registration server. We extend the original flow with device
attestation to strengthen the resource owner’s trust toward the
device that is registered. The flow, including our extensions,
is illustrated in Figure 2. The modifications are as follows.

The device requests access from the authorization server
using OAuth 2.0 Device Authorization flow (1). It uses the
DICE alias key certificate in the same way as in the mutual-
TLS based authorization flow. However, since the authoriza-
tion server doesn’t have an established trust relationship with
the device yet, that is, it does not possess the corresponding
device identity certificate, it cannot authenticate the device at
this point. The server proceeds with the integrity verification
(2) and stores the resulting attestation token for further use. It
then issues device and end-user codes and provides them with
the end-user verification URI to the device (3).

Following the original flow, the device instructs the end-
user using an out-of-band method, e.g., the device’s display or
near-field communication, to review the authorization request
on another device (4), and then starts repeatedly polling (5)
the authorization server for the access token. The end-user
visits the provided verification URL and authenticates to the
authorization server with their credentials, (6), e.g., using a
mobile device.

The authorization server prompts (7) the end-user to accept
or decline the authorization request. It retrieves the device’s
attestation token that was stored earlier and includes it, with
any other device information, in the confirmation prompt. The
end-user reviews the request and either accepts or declines
it (8). In addition to the attestation status, the end-user may,
e.g., visually verify that the device matches the information
given by the attestation service. If the device is granted access,
the authorization server replies with an access token to its
next request matching the authorized device code (9). The
attestation token is embedded in the access token in the same
way as in the mutual-TLS flow.

When the device has retrieved the access token, it uses the
token to register its device ID certificate with the registration
server. In order to ensure that the device registers the same
identity that was attested and presented to the end-user, the
server verifies that the certificate matches that recorded in the
attestation token. After this step, the device is able to request
access tokens independently without end-user assistance.

All communication between the device and the authorization
server is protected by TLS, including the end-user code. In
addition, the access token is bound to the TLS client certificate
and the device identity used during the attestation is encoded
in the attestation token embedded in the access token. Thus,
assuming that the device is not compromised, and that the
end-user can trust that the end-user code provided via an out-
of-band method comes from the specific device, an external
attacker cannot divert the flow to register some other device
instead. Moreover, the registration service may verify that the
registered device matches the device approved by the end-user.



III. EVALUATION

We implemented a proof-of-concept of the protocol exten-
sions described in Section II on a micro-controller class device.
We then measured the communication delays and the amount
of data transmitted during the device authorization protocol
in order to evaluate the performance overhead due to device
attestation.

A. The Proof-of-Concept Implementation

The proof-of-concept IoT device is based on a Nuvoton
M2351 class [14] micro-controller with ARM TrustZone-
M technology [15] that allows hardware-enforced isolation
of the platform into secure and non-secure domains. TCG
DICE has been implemented as early boot code in the secure
domain and utilizes cryptographic accelerator for hash and
asymmetric cryptography calculations. Certificate operations
are implemented using the mbedTLS library [16]. The micro-
controller does not include device secret based on either eFuse
or Physically Unclonable Function, but there is a unique
identifier that is used to derive the DICE UDS instead. How-
ever, a proper implementation would also require the ability
to limit visibility of the secret. Nevertheless, even though
these shortcomings impact the security of the proof-of-concept
implementation, they do not dilute the value of our main work:
the protocol extensions.

The device’s firmware layer is implemented as an applica-
tion on top of the Mbed OS [17] operating system, which runs
in the non-secure domain. DICE alias key credentials are ex-
posed to the device application over TrustZone-M Non-Secure
Callable functions and used as TLS client credentials for all
communication. The application performs device registration
at the first boot. After the boot it proceeds to periodically
sending sensor measurements from a temperature and relative
humidity sensor to an IoT service. The device requests an
access token separately for each measurement cycle.

The authorization server is implemented on top of the
IdentityServer4 [18] OpenID Connect and OAuth 2.0 frame-
work. The framework already provided implementations of
both the authorization flows we aimed to extend. The main
modifications are as follows:

• A new client store for tracking registered devices, inclu-
ding their device ID certificates, and their access rights.

• A new certificate validation scheme that detects DICE
alias key certificates based on their X.509 extensions and
validates them against the new client store.

• Hooks for the two authorization flows to trigger verifica-
tion of integrity evidence and embed the attestation token
claim into the access token before signing the token.

• Modifications to store the attestation result during the
device authorization flow and present it to the end-
user. The end-user view of the attestation information is
presented in Figure 3.

We implemented a separate attestation service that provides
verification procedures for DICE alias key certificates. It
maintains a reference integrity metrics database that records

Fig. 3. The mobile UI for authorizing attested devices

information about valid device firmware, such as their target
device types, firmware hashes, and versions. Attestation tokens
generated by the service use the JSON format and contain
information such as the device identifier, an event timestamp,
the device type, the firmware version, and the attestation status.

Both the registration service and the IoT service are simple
HTTP-based resource servers that are implemented using fa-
cilities provided by the IdentityServer4 framework. While the
registration service is mainly a simple interface that directly
modifies the authorization server’s client store, the IoT service
maintains a database of measurement events from different
sensors. It uses the attestation token to record the security
state of the device at the time of each measurement.

B. Performance Evaluation

We measured the communication delay and the amount
of bytes transmitted between the device and the services to
approximate the performance impact of our approach. Since
device registration is expected to be a rare operation compared
to device authentication and authorization, in this paper we
limit our examination to the latter. The performance impact of
the former is expected to be similar.

In the test setting, all the services reside in the same virtual
machine and communicate locally. The physical IoT device
connects to the services over a Wi-Fi access point. Communi-
cation delays were measured, using the network monitoring
tool Wireshark [19] in milliseconds between TCP packets
belonging to the same operation. The main reason for using
a less accurate external measuring tool was the difficulty in
integrating the measurement code within the device firmware,
especially the TLS library, which limited the accuracy of the



measurements on the device itself. The overhead caused by
the device joining and leaving the Wi-Fi network was omitted
from the measurements as we wanted to concentrate on the
performance impact of the protocol extension itself.

The integrity evidence is delivered as part of a TLS hand-
shake. On the other hand, the verification of the evidence
is triggered by the OAuth 2.0 protocol messages exchanged
after the TLS connection has been established, i.e., the hand-
shake is completed. According to our measurements, the TLS
handshake took on average 11 127 milliseconds between the
device and the authorization server and 11 148 milliseconds
between the device and the IoT service, respectively. After the
connection had been established, the rest of the communication
took on average 56 milliseconds and 22 milliseconds for
these two cases, respectively. The communication between the
authorization server and the attestation service took a total of
28 milliseconds on average. Thus, verification of the evidence
took around half of the processing time for the token request.

Based on these measurements, the TLS handshake over-
head overwhelmingly dominates the communication delay. We
expect this behavior is explained by our low-end device’s
weak performance on asymmetric cryptography taking place
during the handshake, rather than the general processing
requirements, e.g., due to the exchanged data. In comparison,
the device sent on average of 1433 bytes and received 2093
bytes during the TLS handshakes, while the average number
of bytes sent and received during the HTTP message exchange
were 740 and 3896 bytes in the first case and 1478 and 283
bytes in the latter case. Hence, the difference in the amount of
bytes is considerably smaller than in the communication delay.
The integrity measurements add around 158 bytes to the device
certificate size and our implementation of the attestation token
is about 200 bytes long, resulting in around 267 bytes of extra
data within the base64-encoded access token. Thus, compared
to the original OAuth 2.0 flows, the impact of our extension
to the message size is relatively small.

Even though the measured behavior is specific to our choice
of device hardware, it indicates that the IoT device’s ability to
perform a TLS handshake in the first place is most likely the
limiting factor for using our approach. However, the handshake
already exists in the original protocol and our extensions only
slightly increase the amount of data transmitted. The dele-
gation of authentication and authorization to the authorization
server means an additional TLS handshake must be performed
compared to interacting only directly with the IoT service,
effectively doubling the performance cost. Thus, the approach
is not suitable for the most constrained devices.

On the other hand, the OAuth 2.0 access tokens are not
single-use tokens. If the device is able to store the access
token, the communication with the authorization server doesn’t
need to be performed each time the device needs to access the
IoT service. However, lifetime of the access token impacts
security. Moreover, device attestation must be performed at
least after each device boot as the integrity measurements may
change at that point.

IV. DISCUSSION

In this section we first discuss the benefits and challenges
of our approach. Then we discuss some potential use cases for
the presented solution, and especially the use of the attestation
token in the services. Finally, we explore the potential pitfalls
of our work and observations presented in this paper.

A. Benefits and Challenges

The approach presented in Section II has various advan-
tages. First of all, the solution delegates the verification of
device integrity to the attestation service and thus provides
similar benefits through the separation of concerns for remote
attestation as the OAuth 2.0 frameworks provides for autho-
rization: simplicity of service implementation and configura-
tion management, as well as scalability, as the mechanisms
can be distributed. Moreover, the solution re-uses a mature
framework already used in many cloud environments.

IoT applications are often supported by edge computation-
based architectures where resources and functions are in the
servers, which are in close proximity to the devices. The
edge architecture complicates the establishment of end-to-end
trust relationship [20] as the services and access management
functions may be hosted in different locations. Our delegation-
based architecture provides flexibility to the location of ser-
vices but does not increase trust towards edge resources.

The attestation service does not have to be hosted locally
by the identity management infrastructure, but it could also
be provided, e.g., by the IoT device manufacturer or another
trusted third party. In fact, the authorization server may
delegate attestation requests to multiple different attestation
services, e.g., hosted by different device manufacturers, based
on the information included in the certificate. In this case,
the resource server owner must trust not only the identity
management provider, but the attestation service provider to
which the verification of the attestation evidence is dele-
gated. In this sense, the attestation services provided, e.g., by
different device manufacturers, compare to external identity
providers of OAuth 2.0 architecture. The device registration
phase corresponds to the first synchronization of user identity
from the external identity provider.

Embedding the attestation token into the OAuth 2.0 access
token offers flexibility of use. The attestation result can be used
not only for the authorization decision in the authorization
server, but also by the resource servers according to their own
security policies or application-specific needs. For example, in
some cases attestation could be a mandatory requirement for
obtaining an access token for certain security or application
critical functions. On the other hand, resource servers could
use the attestation token as verified evidence of a device’s type.

The approach allows simplified integration into existing
systems, as it requires no modifications to the authentication
and authorization flow from the client’s or the resource server’s
perspective. On the contrary, both the integrity evidence and
the attestation token are embedded in the existing protocol
messages, that is, within the X.509 certificates and OAuth
2.0 access token, respectively. Both of these formats support



extensions. The only additional step to the protocols is the
communication between the authorization server and the at-
testation service, which is hidden behind the interface of the
authorization server. Thus, the same mechanism can be used
with devices, authorization servers, or resource servers that do
not support our remote attestation solution. Rather, the solution
allows remote attestation-capable devices to provide additional
evidence of their trustworthiness to attestation token-aware
services. In fact, due to the heterogeneity of IoT devices and
the lack of remote attestation support in the existing products,
this kind of mixed mode operations is likely.

To enable application-specific exploitation of the benefits of
the attestation token, the claims included in the token should
be meaningful to different types of resource servers. Our
implementation uses a custom format, but for interoperability
a well-known encoding format, such as the Entity Attestation
Token [21], should be used.

Since one of the main motivations of our approach is
to delegate the attestation process to a trusted third party,
and relieve the resource servers from the burden of keeping
track of the device configurations, the claims should contain
rather high-level properties of the device. That is, it should
allow the resource servers to utilize property-based attestation
[22]. Such properties could include, as an example, security-
related claims, such as a high-level integrity state or claims
about trustworthiness of the device, or its capability to keep
secrets. In addition, the token could be extended to convey,
e.g., manufacturer-vouched claims about the data the device
produces and how the data should be interpreted, such as the
type and precision of measurements or trustworthiness of the
measuring process.

As our measurements show, X.509 certificate-based TLS
which uses asymmetric cryptography can cause too much
overhead for the most constrained devices. A more recent TCG
DICE specification [23] introduces symmetric key cryptogra-
phy and TLS-PSK-based authentication to provide a device
attestation mechanism that could be more suitable for these
devices. This mechanisms could also be integrated with OAuth
2.0 as part of our protocol extensions.

As another performance issue, the size of the attestation
token could also become an obstacle for the most constrained
IoT devices. The token should be relatively small to avoid any
processing and memory restrictions on the device. The device
must be able to forward the access token to a resource server
and store it for the lifetime of the token. On the other hand, the
token content should be generic enough to support multiple use
cases. These two requirements rarely go well hand-in-hand.
At minimum, the token could contain the device’s identity
and an overall claim about its integrity state. It could also
contain, e.g., the model and version of the device that the
resource servers could then use to look up device information.
Verbose information could also be included indirectly, e.g., as
a URI to a remote web service hosting the information for
the lifetime of the token. Resource servers could then fetch
the information from the server as needed, without needing to
burden the resource constrained device with the data exchange.

The attestation token conveys information about the target
device, and thus can cause privacy issues if given to less
trusted resource servers: how can the user be enabled to control
to whom the attestation information is given? A potential
solution to this can be implemented in the phase where the
access token is retrieved. The client could be given control on
what type of attestation information can be embedded into the
access token for which resource servers.

Furthermore, even though the attestation token is protected
from eavesdroppers by TLS encryption, in older TLS versions,
the client certificate might be sent unencrypted during the
TLS handshake. In that case, an eavesdropper could extract
the integrity evidence and potentially use it to determine
information about the device’s security state, e.g., if the device
is running vulnerable firmware.

B. Use Cases

Device attestation opens up various opportunities for cyber-
security hardening. Potential use cases and services include:

• Attesting the integrity of each connecting thing pro-
tects the integrity of the network and its services. We
demonstrated [9] our device attestation prototype within
a trial for a research project that focused on mission- and
business-critical communications, e.g., for public safety
and smart farming.

• Knowledge that data has been collected from a trustwor-
thy source can be used as a data quality attribute in a
system with mixed-trust devices only some of which have
a mechanism to prove their integrity. Data collection from
trustworthy sources increases the accuracy and reliability
of results and decisions. For instance, an AI could be
allowed to make actions without human involvement if
the risk of data poisoning is minimized by assuring
trustworthiness of data sources. Data received from an
attestation-capable device could also be used to assess
the plausibility of data from the less trusted devices that
are, e.g., physically close to the more trusted device.

• The fewer unverified devices there are in a network,
the less likely the network is infected by a botnet and,
e.g., will launch a denial-of-service attack or excessively
consume user resources. In critical networks, intelligent
routing decisions can be made using this attestation-based
trust: critical communication can be forwarded to network
segments and routes that are more trusted. A network
could also prioritize data flows from devices that are more
trusted.

• Attesting what a device is — e.g. a sensor, camera,
or drone — enables simplification of user interactions.
Instead of specifying policies for each registered device,
authorization policies can be defined only once for the
type or role of devices. Hence, instead of authorizing each
device to use particular services or making role assign-
ments, new attested devices can be implicitly authorized.
Showing and potentially visualizing the type of attached
device instead of just showing a random alphanumeric
identifier can minimize the number of end-user mistakes.



C. Threats to Validity

In this paper, our aim is to develop easy integration of exist-
ing device attestation mechanisms to an identity management
framework and our main contributions are the protocol exten-
sions and the ways that the services can use the attestation
result. In particular, we do not propose new device attestation
or integrity verification mechanisms.

As our measurements show, our choice of identity manage-
ment framework is not suitable for the most constrained IoT
devices due to performance overhead, which means that the
proposed approach is not suitable for all IoT use cases.

Moreover, our choice of device hardware for the proof-
of-concept implementation is not optimal considering perfor-
mance measurements. The choice was due to the availability
of suitable devices for this research. The device’s poor per-
formance on asymmetric cryptography disturbed performance
measurements: on the one hand it shows that the proposed
protocol is clearly not suitable for the most constrained de-
vices. However, at the same time the results cannot be easily
generalized to less constrained devices. New measurements
with such a device are needed.

In addition, we measured performance only as the commu-
nication delay and the amount of data exchanged between the
device and the servers. However, in many IoT applications
battery lifetime, that is energy consumption, might be a more
relevant performance measure.

V. RELATED WORK

The idea of remote attestation for embedded, resource
restricted devices is not new. It has been studied, e.g., in the
context of mobile devices [24], wireless sensor networks [25],
IoT [26], and device swarms [27]. Existing work often concen-
trates on fundamental aspects of remote attestation, such as the
threat model (assumptions), evidence acquisition (hardware
or software), integrity measurement (static or dynamic), and
the interaction patterns between the participants (e.g., one-
to-one, many-to-many), and scalability. That is, these efforts
often concentrate on the parts of the attestation process that
are common for multiple use cases — the device identity,
integrity measurement, and common primitives for attestation
— and leave out the use case or domain specific part — the
remote attestation protocol. Our work builds upon this body
of work and takes one step toward providing a generic remote
attestation protocol for various use cases and simplifying the
adoption of remote attestation for existing systems.

Many of the above-mentioned solutions base their evidence
acquisition on traditional Trusted Platform Module (TPM)
hardware, which is often too expensive a solution for con-
strained devices, or software-only approaches [28] that impose
no or fewer requirements on the device hardware, potentially
fitting low-cost IoT devices and legacy devices better, but
which cannot offer strong security guarantees. We take the
middle road and utilize DICE [3], which is a lightweight
hardware-based option already supported by many IoT class
micro-controllers.

The concept of DICE has drawn interest in IoT security
community in recent years. For instance, Jäger et al. [29] ana-
lyze its suitability to IoT devices. DICE* is formally verified
DICE implementation integrated into the boot firmware of a
microcontroller [30]. DICE is also used in CIDER [31], which
introduces Trusted Computing primitive called dominance
that, in addition to the detection of integrity violation by
remote attestation, adds unconditional recovery control for the
remote party. Huber et al. [32] build on this work and propose
the concept of DICE++, which enables updating the device’s
trusted computing base without losing devices identity. This
research could be combined with our work.

We are not the first to propose the integration of remote
attestation into identity management infrastructure. For exam-
ple, Ali et al. [10] propose an extension to a federated identity
management system where the identity provider vouches for
the client’s platform integrity in addition to the client’s identity.
The integrity information is then used for access control
decisions. They describe a design and implementation of the
concept for Shibboleth single sign-on architecture. Also, the
work of Leicher et al. [11] has many similarities to our work.
They discuss how integrity verification could be used as an
authentication method in OpenID Connect, an authentication
layer on top of OAuth 2.0, to bind trustworthiness of the device
to an identity. They also mention signaling integrity verifi-
cation result to the user of the authenticated identity, which
resembles our ideas with the attestation token. Neither of these
works target IoT devices. Rather, they discuss attestation of
more traditional TPM-based platforms and end-user access to
resources, e.g., websites. In addition, their solutions require
substantial modifications to the original protocol, whereas our
approach requires only minimal modifications. Moreover, our
focus is more generic than just authentication and authoriza-
tion, as our aim is to also enable the resource servers to use
the attestation results in service-specific ways.

Furthermore, work has been done to integrate remote at-
testation capabilities into other existing communication pro-
tocols to secure embedded devices. For example, Industrial
IoT (IIoT) is an area where the use of Trusted Computing
platforms as key storage and also as integration to IIoT
protocols is emerging. Both Birnstill et al. [33] and Bienhaus
et al. [34] propose TPM-based remote attestation enhancement
to industrial automation protocol OPC UA. They also use TPM
as a cryptoprocessor and secure key storage.

VI. CONCLUSION

In this paper, we presented extensions to the widely used
OAuth 2.0 identity and access management framework that
allows IoT devices to prove their integrity using remote
attestation as part of a delegated authorization protocol. The
verification of the attestation evidence is orchestrated by the
authorization server and the integrity evidence, and the attes-
tation result are embedded in the existing protocol messages
without the need to change the original protocol flow. As a
result, the IoT services only have to worry about using the
attestation result for their application-specific needs, but not



about the attestation mechanism. In addition, we described
the proof-of-concept implementation and early performance
measurements of the proposed approach.

Our solution can co-exist with devices and services that
do not support remote attestation, allowing easy integration
to existing systems, hopefully simplifying the adoption of
attestation of IoT devices as a security practice. Such strong
security mechanisms will be needed more and more in the
future to cope with the security challenge that our increasing
dependence on various types of IoT systems creates.

We discussed some potential ways that a service could
use the attestation information, e.g., as data quality attributes
in mixed trust systems. Such use cases offer an interesting
research direction in enhancing trust to IoT applications and
the data they provide.
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