
An IoT Management System Using Fog Computing
Berkin Yildiran, Erel Ozturk, Necati Ozkent, Yagizcan Arslan, Ilker Korkmaz

Faculty of Engineering
Izmir University of Economics

Izmir, Turkey
Email: {berkin.yildiran, erel.ozturk98, necati.ozkent, yagizcan.arslan93}@gmail.com, ilker.korkmaz@ieu.edu.tr

Abstract—During the past few years, the usage of network-
enabled devices has been climbing rapidly. With the continuous
evolution of industrial automation and fabrication, new demands
have arisen such as constantly monitoring the state of the
devices or being able to immediately intervene in any possible
emergencies.

In this paper, an IoT device management system using the
fog computing paradigm is presented. The system has also been
supported by mobile and web applications. There are four main
components of this system; edge devices to receive or send data
through the local area network, a local fog node to provide data
transmission between the cloud server and edge devices as well
as storing data, a cloud server to establish the communication
between a distant user and local fog nodes, a mobile device that
can go online when required to access the mobile application or
a computer that can go online when required to access the web
application.

Keywords—IoT, fog computing, cloud, smart automation sys-
tem, mobile application.

I. INTRODUCTION

The Internet of Things (IoT) has a wide range of usage from
smart home automation systems to industrial manufacturing
systems. With the rapid growth of industry, requirements of the
industrial systems such as emergency action, fast and reliable
response time, and data confidentiality have also increased.

The Industrial Internet of Things (IIoT) provides a break-
through in industrial production processes by the utilization of
a large number of network-enabled devices [1]. Once the fog
computing paradigm [2] is also included, some aspects of the
system such as reliability, confidentiality, and quickness, have
also been augmented by the promises of fog computing.

Fog computing works like a distributed cloud that resides
in the local network and keeps the real data securely without
exposing them to the internet. Fogs are located close to edge
devices to provide fast data transfer between edge devices and
the cloud.

In this study, an IoT device management system using
fog computing, with two user-friendly interfaces, a mobile
application, and a web application, is being introduced. The
objective of the system is to augment the communication
between users and edge devices in an industrial workplace.
The system is actually a core infrastructure that enables IoT
management using fog computing. The reason to use such a
system in industrial workplaces is basically its scalability with
extra components as well as the quick response time of fog

computing. This system can be used in factories, hotels, IT
departments of huge institutions, etc.

The main purpose behind this project is to introduce some
features (and/or augment the existing ones) to systems in
industrial manufacturing areas (i.e., factories) by taking ad-
vantage of the promises of fog computing. With the help of
fog computing involvement to IoT, the following contributions
are aimed to be made:

• by providing the flexibility to set up their network,
database, or cloud, each user’s privacy can be ensured,

• under the case of an emergency, users will be able to
intervene instantly since the response is coming from the
local fog node, not the cloud server. The reason behind
the fact that users can intervene instantly is related to the
response time. The response time is much lower because
the latency is also lower in the fog computing paradigm
[3].

Taking advantage of fog computing, a new layer of security,
storage, communication, computation, networking, and control
has been added to the system to make it more secure and
reliable.

Besides, the points to be emphasized in this paper are as
follows:

• An in-depth, detailed, and varied related work-study.
• A comparison section that will support, strengthen, and

facilitate the understanding of these studies.
Although it is an IoT management system in general, it has

been used in the fog computing paradigm, unlike other similar
systems. The reason for using this paradigm is the advantages
it provides in terms of speed and response time.

The rest of the paper is organized as the following structure:
Section II explains the related works that have been evaluated
about their pros and cons; Section III gives the design and
implementation details of the proposed system; Section IV
presents on the results; Section V discusses the critics of the
authors and some possible future works; Section VI concludes
the paper.

II. RELATED WORK

There has been a significant amount of research for IoT
device management systems. The common problem is the
inaccessibility to devices from out of their range. Also, con-
nectable device compatibility according to their protocols,
data exchange with the server, and response time have been
considered.



Within the scope of our research, the information gathered
and its summarized comparison with our proposed system is
presented in Table I. This table clarifies the characteristics of
the subjects related to the research conducted.

TABLE I
COMPARISON OF RELATED PROJECTS

Related Features
Work Technologies Remote Access Intermediate Node

Proposed Raspberry Pi, Smartphone, Raspberry Pi
System nodeMCU Web Panel

[4], [5] Arduino BT, Android Phone -
ZigBee

[6] TI CC3200 Voice Call -
Launchpad

[7] Arduino Uno Smartphone, -
Email

[8] WiBro Mobile Device Smart Gateway

Raspberry Pi,
[9] Arduino WiFi Smartphone -

Shield

[10] Z-Wave, ZigBee Smartphone -

A home automation system allowing multiple users to
control the appliances through an Android application has been
introduced in [4] and [5]. Local hardware is configured to
communicate between home appliances and the cloud. The
mentioned system is connected to Google App Engine, and
the communication between the server and the local hardware
is handled via Google Cloud Messaging. Although the use
of third-party applications such as Google App Engine and
Google Cloud Messaging has eased the implementation phase,
the use of such applications might reduce the stability of the
system.

Kodali et al. [6] present an IoT based home automation
system providing remote security. The system can be con-
trolled from the local area network. Also, while the user is
away from home, any triggered sensor can alert them without
requiring an internet connection or any interface. This system
comes in handy where the internet infrastructure is unstable
or unreachable as it alerts the users via a simple voice call
to their mobile devices. However, the work limits the ability
to manage devices from a distance; so the system needs an
internet connection to be more effective on managing and
monitoring from outside.

Dutta and Roy [7] present a cost effective smart building
system. The system is controllable by a smartphone or a
computer. Regarding the system design, it was aimed to

include automation as well as reducing unnecessary energy
consumption and human effort by incorporating IoT, fog,
and cloud. The proposed solution is built by using Arduino
Uno, sensors, Bluetooth module, WiFi module, fog gateway
server, and the cloud platform. It can also inform users via
email in case of a failure of an appliance. Building such a
system can be challenging by the means of expenses. Placing
a separate fog in each local area would be more expensive
than placing intermediate nodes that transmit device data to
the corresponding local fog. Also, it avoids extra complexity.

Verma and Sood [8] propose a human-interactive healthcare
system. Patients’ data (such as heartbeat, oxygen saturation,
etc.) are sent from edge devices to a cloud server via fog
nodes. In the cloud layer, a decision-making layer is included
for general emergencies such as low heart rate and low oxygen
saturation. In case of any other emergencies, a responder
(e.g., doctor) monitors the data in the fog layer. If the cloud
layer is somehow inaccessible, the responder will be able to
monitor the patients’ data manually through the fog layer. The
computation and the data storage services would stop working
in the case of an outage in the cloud. Also, communicating
via the internet despite being in the coverage area of local fog
nodes is a disadvantage since the latency increases.

Krishnan et al. [9] use fog computing to solve some of the
problems that can be demonstrated by increasing the number
of network devices. In this way, low latency, widespread
geographical distance, mobility, and a very large number
of nodes can be provided. Fog computing is used as there
may be too many sensors and areas. It uses Arduino and
Raspberry Pi while uploading the data received in certain
periods to the cloud. In the temperature measurement scenario,
the temperature sensors and WiFi Shields that send the data are
connected to Arduino. The data received with WiFi adapters
are stored and processed by all Arduino devices with the
Raspberry Pi and then sent to the cloud. Users can monitor
these data, which are coming from the cloud. In a scenario
where temperature values are measured and sent to the cloud
periodically, the same temperature values are held instead of
being sent. If the temperature value changes, only this data
will be sent, and the same temperature values as before will
be predicted by the cloud.

Regarding SmartThings, Samsung is taking a major step to
be the core of the smart home today. In [10], SmartThings has
a cloud platform, a hub that is a gateway or home controller,
and a client application. This application allows users to
control, automate, and monitor compatible technologies in
their homes via a smartphone. SmartThings can communicate
with devices by connecting to the internet router at home. This
system works with compatible protocols such as Z-Wave [11],
Zigbee [12], and IP-accessible devices. Also, this system only
works with devices specified by Samsung. Therefore, the user
cannot introduce incompatible protocols to the system.

Yi et al. [13] discuss that the following three topics heavily
need the use of fog computing: augmented reality, content
delivery and caching, and mobile big data analytics. Regarding
augmented reality, since the human brain can notice such short



delays as 10-15 milliseconds, it is crucial to deliver the scene
(or sounds) as fast as possible. The key solution to that is fog
computing due to its low latency. Regarding content delivery
and caching, in a situation where there is a need for constant
data delivery, sending requests over and over to a single server
can be exhausting in terms of efficiency and price. In such a
scenario, using fog computing can be lifesaving since all these
requests are going to be shared among fog nodes and processed
to a main (cloud) server. Regarding mobile big data analytics,
in scenarios where there is big data processing, the system
suffers from the cloud’s high latency and computational power
issue. Instead of transmitting data to the cloud to process and
send it back to the user; with the help of fog nodes, many
things can be saved such as latency, storage, process power,
etc. So, in [13], an example of a large-scale environment
monitoring system is given, and it is explained how the local
fog nodes can process the corresponding local area’s data and
then transfer it to the cloud.

Greengrass [14] has an open-source design. Customers can
program their devices to act locally on the data they gen-
erate. Once the software development completes, Greengrass
remotely operates and manages the edge devices without
a firmware update. Greengrass provides remarkable services
such as offline operations, secure and encrypted communica-
tion, and data filtering. Regarding offline operations, Green-
grass devices can work locally on the data they generate and
respond quickly to the events without any cloud communica-
tion. Apart from that, devices can operate normally even if they
are offline. When devices reconnect, Greengrass synchronizes
the data on devices to the cloud system. Regarding secure and
encrypted communication, all communication between both
local and cloud devices is encrypted. Data will never exchange
without a proven identity. Regarding data filtering, Greengrass
passes the data through a filter system before sending it to the
cloud. This filtration greatly reduces the data transmitted to
the cloud.

Oracle Cloud Observability and Management Platform ser-
vices [15] are grouped under four main headings as Applica-
tion Performance Monitoring, Log Analytics, IT Analytics, In-
frastructure Monitoring. Application performance monitoring
helps to monitor incoming data and system status. This data
is forwarded to the system development and operations teams.
Thus, end-user data, application performance, and system logs
are collected in an organized data set. Log analytics examines
and analyzes the log data in this set. In this way, an operational
view is formed. It helps to take fast and effective actions. IT
analytics and infrastructure monitoring analyze and classify
the performance data in the created data sets. These two
services are mostly used to inform IT experts and system
administrators in areas such as accessibility and system health.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, system design and implementation details
of our proposed system are elaborated. Mainly, the system
architecture and its communication infrastructure are provided.

Furthermore, the mobile and web application interfaces are
presented.

The proposed system gives its users the ability to manage
and monitor fogs, places, and devices locally and remotely.
With the help of fog computing, users do not need to log into
the cloud, thus they do not need to be online to manage their
infrastructure. This enhances user’s privacy over the network
since the data is stored locally. Moreover, in case of any
emergency triggered by any of the edge devices, the involved
parties can be alerted instantly thanks to the low latency of
fog computing.

A. System Architecture

The system is designed to adapt to different areas such as
industrial use and personal use. Overall, our system design
looks like in Fig. 1 and Fig 2.

Fig. 1. Overview schema of the system with remote access.

The communication between fog and cloud is done via
Hypertext Transfer Protocol Secure (HTTPS) [16] to secure
data transmission. When a place, fog, or device has been
added, updated, or deleted the given information is shared with
the cloud to maintain the integrity between cloud and fog. The
fog synchronizes the device data it receives every 15 minutes
with the cloud. The data is transmitted in JSON format [17].

Intermediate nodes will be installed in places with high
device density. These intermediate nodes will be tasked with
connecting the edge devices in the corresponding part of
the local fog node. They will transmit the incoming data
bidirectionally via Hypertext Transfer Protocol (HTTP) [18]
to decrease the performance cost of HTTPS as concluded by
Naylor et al. [19] from and to the local fog node. In other
words, they will be a bridge between edge devices and fog
nodes. Using these intermediate nodes, the structure will be



established to prevent any possible overload by reducing the
number of links a local fog node establishes.

In scope of the proposed system, only edge devices with
a wireless protocol will be supported, wired connections will
not be supported.

As can be seen in Fig. 1, if the user attempts to reach edge
devices within the local area network, the user will not need
an internet connection and will be able to access devices via
that local fog node. On the other hand, if the user wants to
reach devices while away from the local area network, the
user must have an internet connection to communicate with
the cloud server. The cloud server will connect the distant
user to edge devices.

Device manipulations (create, edit or delete) can only be
accomplished when connected to the local area network. On
the other hand, while accessing the system remotely, only the
current state of the system, data from the devices and data
graphics can be observed.

Fig. 2. Overview schema of the system in local area.

With the help of the routing capability of the fog node
in Fig. 2, the system will be connected to the internet to
get requests from the cloud and synchronize with the cloud.
Intermediate nodes and edge devices can still be offline. The
user in local area can modify the system directly without the
need of internet connection. Later, anytime when the fog re-

synchronizes its data with the cloud, the modification on the
system will be available to the distant remote users.

B. System Infrastructure

The proposed system consists of a REST [20] API, de-
veloped with PHP [21] and Laravel Framework [22], to be
consumed by the web and mobile applications and the devices.
The data is stored on a MySQL [23] database but can be
exchanged easily with other Relational Database Management
Systems (RDBMS) supported by Laravel [24].

General actions such as managing places, fog, and devices
as well as logging into the system are shown in the use case
diagram in Fig. 3.

Fig. 3. Use case diagram of the proposed system.

Laravel Framework provides an easy way to manage envi-
ronments such as fog and cloud via .env files. When setting up
a fog, user credentials are entered into the aforementioned .env
file, and an Artisan Command [25] is run in the fog to receive
a Bearer Token [26] from the cloud. Bearer Tokens are used
by the API consumers to authenticate the corresponding user.
They are generated by the API and stored in the database.

Synchronization between the fog and cloud is done via
a Facade design pattern [27] sending appropriate requests
to the cloud with Laravel’s HTTP Client while adding the
Authorization HTTP Header [28] containing the Bearer Token
to the request to authenticate in the cloud.

While implementing the database, version 4 Universally
Unique Identifiers (UUID) [29] is used instead of auto-
incremented integers to establish uniqueness inside the system.
With the use of UUID, primary keys of fields generated
during synchronization are preserved. A version 4 UUID
is a randomly generated 128-bit long alphanumeric label,
guaranteeing uniqueness across space and time by providing
a total of 2122 possibilities.

The database tables and relationships are created using
Laravel’s migration system. Places, fogs, and devices have a
three-way relationship with each other:



• Place has-many Place
• Place has-one Fog
• Place has-many Device through Fog
• Fog has-many Device
Before using the system, the admin should initially create

a place and assign a fog and a number of devices belonging
to that place.

When setting up a device, its MAC address and expected
parameters must be entered correctly to receive and store the
data incoming from device requests. When a device sends its
data to the fog, the unique identifier of the user is appended to
the path of the URI, and the MAC address is also sent within
the request so that the fog recognizes the device.

C. Hardware Installation

In general, appliances that have been used throughout this
study can be divided into three groups:

1) Cloud Server: A virtual machine with 2GB RAM, a
burstable portion of an Intel v-CPU, 50GB SSD, and 1TB of
bandwidth from DigitalOcean [30] has been used as a cloud
server.

Apache [31], MySQL, and PHP were installed to run the
API server.

2) Fog Node: Raspberry Pi 3 Model B+ with 4GB RAM
has been used as a local fog node. Inside Raspberry Pi, a fog
server has been installed just like a mirror of the cloud server.
The fog has been provided with an internet connection via its
WiFi module. A 32GB SD card has been used with its adapter
as the storage unit.

Apache, MySQL, and PHP were installed to run the API
server on fog node.

3) Edge Devices: The system has been experimented with
two basic sensors; a DHT11 sensor that measures the temper-
ature and humidity along with an HC-SR04 ultrasonic sensor
that measures the distance. A nodeMCU CH340 (ESP32E)
module has been used to collect the sensor data and send it to
the server. DHT11 has been powered by the 3V3 pin of the
nodeMCU. Since HC-SR04 requires a 5V power supply and
nodeMCU has only 3V3 output, an Arduino Uno R3 module’s
5V output has been used as an external power supply for HC-
SR04. The integrated circuit is shown in Fig. 4.

Fig. 4. Circuit scheme of the implemented hardware.

The nodeMCU module has been programmed in a way that
the device data can be posted only if at least one of them has
changed. In other words, it will not post if no device data is
changed. The posting process is a simple HTTP POST request.

NodeMCU will read the devices’ data and decide to post or
not once per 5 seconds.

D. User Interfaces

Two different user interface (UI) parts are provided to users;
a mobile application and a web application. Even though the
platforms are different, both applications are designed in such
a way that they work identically.

A device that can go online when necessary is required. On
the mobile end, the user interface is designed using Flutter
Framework [32]. On the web end, the user interface is designed
on Angular Framework [33] as a single page application [34].

It is important whether the user is logging in via cloud or
fog, in other words, whether from a distance or inside the LAN
of the local fog node. Users are not allowed to manipulate any
information while they are away from their local area, they can
only view the data of the devices or control them if possible.
When the user logs in, the system will acquire the state of the
WiFi connection. If the WiFi is connected to a network where
a fog exists, the system will set the base URL to the local fog
node’s server URL. If the WiFi is not connected, the system
will set the base URL to the cloud server’s URL. Therefore,
it is possible for the system to understand whether the user is
inside the local area or not.

In Fig. 1, a distant user that accesses the system through the
cloud server has been shown. Since the device needs to reach
the cloud, it requires an active internet connection to log in
to the system. In Fig. 2, internet connection is not required as
long as the device is connected to the LAN.

The communication between user interfaces and the API is
done via HTTP requests. Once the user logs in, a Bearer Token
is provided by the API to authenticate the client for further
requests. Once logged in successfully, the user will be able
to monitor, or control the devices. While creating the devices;
device information, such as MAC address or parameters, must
be entered correctly. Otherwise, the system will not be able
to communicate with that device. Once a device is created
successfully, it will send data periodically using the HTTP
POST method and the UI will visualize the data as graphs that
can be filtered as daily, weekly, or monthly along with some
important features such as minimum, maximum, and average
values.

Moreover, it is possible to integrate the hierarchical place
structure into the user interface. Therefore, it will be possible
to filter the devices based on where they are located. In Fig.
5, a sample place structure is illustrated. As seen, a factory
is divided into four sectors and different devices have been
created in each sector. The user can create a new place under
the place. Furthermore, the user can add any device (in plug-
and-play manner) in these places.

IV. RESULTS

In this section, some test results of the proposed system
have been illustrated. In Fig. 6, response times of the cloud
and fog servers are given respectively. In Fig. 7, implemented
mobile interface screenshots have been provided.



Fig. 5. A sample hierarchical place structure.

Performance testing of the system is done via Apache
JMeter [35] tool. The purpose of this test was to compare and
provide some solid proof of fog computing being faster than
cloud computing. Regarding the test, 1000 sample device data
is queried via HTTP requests and corresponding transmission
times of the responses (i.e., latency results) are measured. To
compare the cloud and fog responses, average latency results
for every consecutive 50 HTTP requests within the set of entire
1000 requests are shown in Fig. 6. In Fig. 6, the latency results
in milliseconds have been visualized for cloud server and fog
server, respectively.

Looking at the test results in Fig. 6, it can be concluded
that in fog computing, responses are approximately two times
faster than cloud computing. While making this inference,
irrelevant spikes on the graphs have been ignored. As an
evaluation of the results, it can be clearly stated that using
fog computing, a remarkable advantage on response time has
been provided to the users.

In Fig. 7, the real device data graphs have been provided.
The device is the one that has been clarified in Section III-C.
As seen in these charts, the proposed system has been realized

Fig. 6. Cloud and Fog response times.

successfully and an appropriate mobile application has been
implemented to monitor its IoT environment. The data that
is coming from the device is synchronizing with the UI of
the mobile app software instantly. The corresponding output
graphs are being consistently drawn by the UI.

Taking the cost of the proposed system into consideration,
it would be appropriate to use this system for factories, huge
hotels, or larger businesses instead of homes. The system is
more costly than other services available in the market because
of the extra fog layer included in the system. Any intermediate
node can be added in plug and play manner to expand the
system into a hierarchical structure.

Fig. 7. Sample temperature and distance charts on mobile application.

We did not include manageable devices (air conditioner, led



lights, etc.) in our system because it went beyond our purpose.
Our actual focus was to establish a fog-based IoT management
system with a wider spectrum.

Despite using a cross-platform framework in the mobile
implementation, which is Flutter, the UI is designed according
to the Android interface. However, the UI can be adjusted to
the iOS interface in the future.

V. DISCUSSION AND EVALUATION

The proposed system has many advantages as well as some
disadvantages. Regarding the most remarkable advantage, we
can underline the response times being short with the help of
fog support. We have provided a fast, reliable, and secure sys-
tem to the users. We have also stated that the most significant
reason for these aspects is the fog computing paradigm.

Furthermore, integrating a new hardware component to the
proposed system is easy since it is plug and play. By this
way, third-party software and hardware integration can also
be done simply. As an example of this, an alert API can
be implemented such that whenever the monitored value of a
device exceeds a predefined threshold, the system can trigger
an alert. Considering the hardware, it would not consume extra
time to implement since the device structure of the system
is plug and play. Considering the software, implementing an
alert API would be a quite effective and time-saving solution.
The structure of such an API is exampled with the following
pseudo-code:

Algorithm 1: Trigger alert

Function checkTrigger(double threshold):
if device.value >= threshold then

notifyUser()
end

End Function

On the other hand, the most remarkable disadvantage of
the system is its overall cost. Such an IoT system with
fog computing needs some additional hardware components.
Therefore, the cost of the entire system increases.

VI. CONCLUSION

With this system, we combined fog computing, one of the
new doctrines of computer networks literature, with IoT, which
is a part of today’s fast and smart technological life. We built a
fast, reliable, and independent platform that can be deployed in
huge facilities where fast transactions on many sensor data are
required such as the petrochemical industry. Users can connect
to system either from mobile or web platforms. Through the
UI, they can perform many operations such as examining data
of their devices, adding, updating, or deleting devices. The
daily, weekly, or monthly changes of the data received by the
system are shown to the users by means of tables and graphs.

In the future, many different sensor devices can be included
in the system. Tests using larger data can be performed on the
functionality of the system and the reaction of the system can
be evaluated.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
useful comments on the paper. The authors also thank Metin
Ahmet Ustabasi for his help on the proofreading stage of the
paper.

REFERENCES

[1] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A systematic
survey of industrial internet of things security: Requirements and fog
computing opportunities,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 4, pp. 2489–2520, 2020.

[2] O. C. A. W. Group, “Openfog reference architecture for fog computing,”
OPFRA001.020817, 2017.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in 2015 Third IEEE workshop on hot topics in web systems
and technologies (HotWeb). IEEE, 2015, pp. 73–78.

[4] A. Gurek, C. Gur, C. Gurakin, M. Akdeniz, S. K. Metin, and I. Korkmaz,
“An android based home automation system,” in 2013 High Capacity
Optical Networks and Emerging/Enabling Technologies. IEEE, 2013,
pp. 121–125.

[5] I. Korkmaz, S. K. Metin, A. Gurek, C. Gur, C. Gurakin, and M. Akd-
eniz, “A cloud based and android supported scalable home automation
system,” Computers & Electrical Engineering, vol. 43, pp. 112–128,
2015.

[6] R. K. Kodali, V. Jain, S. Bose, and L. Boppana, “Iot based smart security
and home automation system,” in 2016 international conference on
computing, communication and automation (ICCCA). IEEE, 2016, pp.
1286–1289.

[7] J. Dutta and S. Roy, “Iot-fog-cloud based architecture for smart city:
Prototype of a smart building,” in 2017 7th International Conference
on Cloud Computing, Data Science & Engineering-Confluence. IEEE,
2017, pp. 237–242.

[8] P. Verma and S. K. Sood, “Fog assisted-iot enabled patient health
monitoring in smart homes,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 1789–1796, 2018.

[9] Y. N. Krishnan, C. N. Bhagwat, and A. P. Utpat, “Fog comput-
ing—network based cloud computing,” in 2015 2nd International Con-
ference on Electronics and Communication Systems (ICECS). IEEE,
2015, pp. 250–251.

[10] D. Lee, “Internet of things: Smart home system,”
https://www.theseus.fi/handle/10024/161349, 2019, (accessed on
13 July 2021).

[11] “Z-wave mesh network protocol specification,”
https://www.silabs.com/wireless/z-wave/specification, (accessed on
20 January 2020).

[12] “Zigbee - zigbee alliance,” https://zigbeealliance.org/solution/zigbee/,
(accessed on 20 November 2020).

[13] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 workshop on mobile
big data, 2015, pp. 37–42.

[14] “Aws iot greengrass,” https://aws.amazon.com/tr/greengrass/, (accessed
on 13 July 2021).

[15] “Oracle cloud observability and management platform,”
https://www.oracle.com/tr/manageability/, (accessed on 13 July
2021).

[16] “Hypertext transfer protocol (http/1.1): Message syntax and routing,”
https://datatracker.ietf.org/doc/html/rfc7230, (accessed on 13 July 2021).

[17] “The javascript object notation (json) data interchange format,”
https://datatracker.ietf.org/doc/html/rfc8259, (accessed on 13 July 2021).

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999.

[19] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the ”s” in
https,” in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
133–140.

[20] “What is rest,” https://restfulapi.net, (accessed on 13 July 2021).
[21] “Php,” https://www.php.net, (accessed on 13 July 2021).
[22] “The php framework for web artisans,” https://laravel.com, (accessed on

13 July 2021).
[23] “Mysql,” https://www.mysql.com, (accessed on 13 July 2021).



[24] “Database: Getting started - laravel - the php framework for web
artisans,” https://laravel.com/docs/5.1/database, (accessed on 13 July
2021).

[25] “Laravel docs artisan,” https://laravel.com/docs/8.x/artisan, (accessed on
13 July 2021).

[26] “The oauth 2.0 authorization framework: Bearer token usage,”
https://datatracker.ietf.org/doc/html/rfc6750, (accessed on 13 July 2021).

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[28] “The ’basic’ http authentication scheme,”
https://datatracker.ietf.org/doc/html/rfc7617, (accessed on 13 July
2021).

[29] “A universally unique identifier (uuid) urn namespace,”
https://datatracker.ietf.org/doc/html/rfc4122, (accessed on 13 July
2021).

[30] “Digitalocean – the developer cloud,” https://www.digitalocean.com,
(accessed on 13 July 2021).

[31] “Apache,” https://www.apache.org, (accessed on 13 July 2021).
[32] “Flutter,” https://flutter.dev, (accessed on 13 July 2021).
[33] “Angular,” https://angular.io, (accessed on 13 July 2021).
[34] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page applica-

tion using angularjs,” International Journal of Computer Science and
Information Technologies, vol. 6, no. 3, pp. 2876–2879, 2015.

[35] “Apache jmeter,” https://jmeter.apache.org, (accessed on 13 July 2021).


