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Abstract—In this paper, we investigate the idea of drone-
assisted multiple antenna ambient backscatter communication
(AmBC) based internet of things (IoT) sensor network (SN). We
consider a scenario where a drone is used to collect the data from
distributed multiple antenna SNs at which the drone is working
as an ambient power emitter and a reader. The sensor nodes
passively modulate the transmitted pure carrier by implementing
load impedance modulation which results in an amplitude shift
keying modulation. In order to quantify the performance of
the studied network, we aim to find a closed-form expression
for the coverage probability for the AmBC double-Rayleigh
dyadic fading channel. Our model also incorporates Line of Sight
(LoS) and Non-LoS (NLoS) propagation states for accurately
modeling large-scale path-loss between drone and SN. We also
investigate the use of the method of the moments in finding
the probability density function (PDF) for the overall fading
channel by matching it to a Log-Normal distribution to ease
the mathematical manipulations. Finally, numerical results are
compared to Monte-Carlo simulations to verify the effectiveness
of the derived system model analysis and to characterize the
optimal selection of the network parameters in maximizing the
coverage probability.

Index Terms—Drone, Backscatter communication, Dyadic fad-
ing, IoT, Coverage probability

I. INTRODUCTION

With the proliferation of smart connected, sensing devices
and the massive IoT applications as key enablers of smart
cities, there is a dire need for a more flexible platform to
deliver IoT data in private, low-power, and efficient ways.
These IoT applications, in essence, require an energy-efficient,
low latency, high data-rate communication, and a learning
paradigm to decrease the footprint of the connected devices
on the network bandwidth and latency [1], [2].

In multiple applications (e.g., smart agriculture and smart
cities), there is a dense deployment of smart IoT devices
and this requires sophisticated models for the radio access
network (RAN) and interference management. The need for
dense deployment of IoT-connected devices is defined by
the International Telecommunications Union (ITU) as massive
Machine-Type Communications (mMTC) and this type of
deployment with some characteristics of the ultra-reliable and

low latency communications (URLLC) requires the adoption
of more agile and responsive networks [3]. Also, the wireless
infrastructure is not always available, and if it exists it adds
a huge footprint on the capital and operational expenditure
(CAPEX/OPEX) to secure the wireless communication.

In order to solve the needs for instant low-cost infrastructure
in the interference-rich fields, drones or unmanned aerial
vehicles (UAVs), due to their agile nature, can be harnessed to
serve as temporary drone base stations (DBSs) or gateways and
hence can serve for wide fields of mMTC kind of IoT networks
[4]. This requires an intelligent trajectory, RAN utilization, and
efficient resource allocation. The key feature of flying objects
and the vertical design of UAV IoT networks is the desirable
channel characteristics for the air to ground (A2G) link. UAVs
provide better line of sight (LoS) link characteristics, and
thus the quality of the network can be enhanced. However,
increasing the LoS link probability can increase the co-channel
interference between different locations of the network and
hence an optimal localization and interference management
for drones to ground is required [5]–[11].

In order to tackle the issue of the high CAPEX in the infras-
tructure of the dense SNs, backscatter communication, [12]–
[21] presents an attractive alternative that can be deployed
densely with very low cost. Backscatter radio communication
does not require expensive active components such as RF
oscillators, mixers, crystals, decoupling capacitors, etc. The
SNs communicate with the access point (AP), also called the
Reader which is presented in this article as drone readers,
by modulating the ambient un-modulated RF carrier which
is transmitted by the AP. The RF carrier modulation is
achieved by connecting an antenna to different loads which
fundamentally translates into different antenna-load reflection
coefficients. Many research papers in the recent past have
been presented to show fruitful applications and advantages
of backscatter communications.

In recent papers [22]–[24], we developed a comprehensive
framework to characterize the performance of drone-assisted
backscatter and millimeter-wave simultaneous wireless infor-
mation and power transfer (SWIPT) communication-based IoT



sensor networks. We considered such a scenario where a drone
transmits an RF carrier which is modulated by IoT SNs and
quantified the coverage probability for a single onboard SN
antenna. The authors in [25], under drone energy constraints,
evaluated the system average outage probability and then used
the golden section method to improve the energy efficiency
as well as finding the optimal backscattering drone position.
Their analytical and simulation findings demonstrated that
there is a compromise between the placement of the data-
gathering drone location and the outage probability. In [26],
the authors presented the basic principles of ambient backscat-
ter communication (AmBC), and they analyzed its features
and advantages and suggested some open issues to predict its
potential applications for future IoT infrastructure. In [27], the
authors introduced a 5.8-GHz backscatter tag that harnesses
the quantum tunneling effect and presented their advantages
in increasing the range of backscatter radio links. To increase
the reliability of intelligent and passive communications, the
authors in [28] introduced the idea of large intelligent surface
(LIS) aided backscatter communication systems. They showed
that the LIS aided backscatter can significantly impact the bit
error rate performance. The idea of massive wireless energy
transfer has been presented in [29]. The authors over-viewed
the main architectures, challenges and techniques for efficient
and salable wireless power transfer that can be considered
as a key enabler of the backscatter SWIPT technology in
the future of the sixth generation (6G) communications. In
order to harness the backscatter technologies in the future
6G communications for vehicular to everything (V2X) sce-
narios, the authors in [30] presented a novel analysis for
non-orthogonal multiple access (NOMA)-enabled backscatter-
based V2X networks. They introduced the idea of backscat-
tering via roadside units by applying the NOMA technique to
increase the performance of the network.

Given the advantages of drone-assisted backscatter commu-
nications and its expected effect in enhancing the communica-
tion network conditions and decreasing the needed resources
for the network operation, we introduce the effect of using
multiple antenna backscatter tags on the performance of the
overall network.

A. Contributions

The key contributions of this paper are as follows:
1) Considering a multiple antenna backscatter sensor net-

work, we first derive the statistical characteristics of
the dyadic fading channels and then employ it to study
the coverage probability for a certain network geometry
under a realistic path-loss model.

2) We then present an analytical framework to quantify the
moments of the received signal at the reader side of the
backscatter link.

3) The cumulative distribution function (CDF) of the end-
to-end fading channel is quantified using higher-order
moments in conjunction with the Gil-Pelaez theorem.
However, this requires complex integration for which
numerical integration takes a long time to converge.
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Fig. 1: System model.

We present a solution based on the moments method
on approximating the fading channel CDF by a Log-
Normal distribution which simplifies and speeds up the
evaluation of the coverage probability. Then we evaluate
the convergence of the approximation in the results
section.

4) We investigate the design space of the considered net-
work and present several important insights on engineer-
ing the backscatter sensor SN network.

B. Organization

The rest of the paper is organized as follows: Section
II introduces the system model and deployment geometry
of the network. Section III gives the performance analysis
and mathematical modelling. Section IV presents numerical
results. Finally, Section V provides some future work and
conclusions.

II. SYSTEM MODEL

As shown in Fig. 1, the system model consists of a bi-
static drone signal transmitter and a receiver. The transmit-
ter emits a pure sinusoidal signal to the intended multiple
antenna backscatter tag with M antennas. The antennas of
the backscatter tag passively reflects the received signal after
modulating the pure carrier with the sensor’s data through
controlling the antenna reflection factor Γi following the
binary data of the sensor1. The channels from the reader to the
tag and back to the drone reader are all modelled as a complex
Gaussian random variables. The fading channels from the
carrier emitter to the tag antennas are denoted by the symbol
Hf ∈ C1×M which represents the forward channel vector
from the emitter to the tag such that Hf = {hf1 , ..., hfM }.
Hb ∈ CM×1 is the backward channel vector from the tag to
the reader such that Hb = {hb1 , ..., hbM }. The dyadic channel
(i.e., the cascaded channel) then can be written as the complex
multiplication of the forward and the backward channel as

1For simplicity and without any loss of generality, we will assume that Γi

is 1 for all the backscatter tag antennas and also the separation between the
antennas is sufficient to assure independent and uncorrelated dyadic fading
channels.



Hi = hfihbi . Hence, the overall received signal from the M
dyadic channels at the reader antenna can be written as

yT (t) =

M∑
i=1

√
Pt|Hi|L−1(hd, r)G(hd, r)x(t) + n(t), (1)

where, Pt is the transmit power, L(hd, r) is the overall path-
loss for the dyadic link, G(hd, r) is the antenna gain which
is dependent on the location of the backscatter tag and will
be discussed later, x(t) is the message signal from the tag at
time t and n(t) is the additive white Gaussian noise (AWGN)
at the receiver. Here, we assume that the backscatter tag adds
no AWGN to the reflected signal since the reflection is made
without any internal processing for the pure carrier.

γT =

M∑
i=1

|Hi|2. (2)

Before presenting the statistical model of γT , we present the
link budget from the large-scale fading and the antenna point
of view in the next two subsections and then later the small-
scale fading.

A. Large-Scale Fading Model:

In order to accurately capture the propagation conditions
for drone assisted backscatter communication, we employ
the path-loss model presented in [31], [32]. The backscatter
communication link is dyadic in nature, (i.e., it is characterized
by the product of forward and backward channel gains). We
assume that both forward and backward channels experi-
ence the same path-loss, which is reasonable for the mono-
static architecture. The employed path-loss model adequately
captures LoS and NLoS contributions for drone-to-ground
communication as follows2:

LL(hd, r) = K
(
r2 + h2d

)
, (3)

LNL(hd, r) = KNL

(
r2 + h2d

)
, (4)

where hd is the height of the drone in meters, r is the two
dimensional projection separation between the drone and the
SN, KL and KNL are environment and frequency dependent
parameters such that Ki = ζi

(
c/(4πfMHz)

)−1
, ζi is the excess

path-loss for i ∈ {L,NL} with typical values for urban areas
ζLoS = 1 dB. The probabilities of having a LoS and NLoS
link between the DFR and the desired SN are as follows:

PL(hd, r) =
1

1 + a e
−bη tan−1

(
r
hd

)
+b a

, (5a)

PNL(hd, r) = 1− PL(hd, r), (5b)

where a, b, c are environment dependent constants and η =
180/π.

2From now on, we will write the subscripts L and NL to refer to LoS
and NLoS, respectively.

B. Antenna gain

In order to reflect the effect of the drone antenna gain pat-
tern, we use a simple elliptical approximation of the antenna
gain pattern at which we will only have a main lobe with
varying gains according to the elevation angle of the drone to
the backscatter tag. As the elevation angle φe is a function of
the drone height and the tag horizontal distance, we can write
the antenna power gain factor as

G(hd, r) = A cosK
(
π

2
− φe

)
= A cosK

(
π

2
− tan−1

(
hd

r

))
,

(6)
where A is the power gain of the antenna at distance r = 0
(i.e., φe = π

2 ) and K is a factor that determines the antenna
gain main lobe width where K is any positive number. In-
creasing the factor K makes the antenna more directional.

C. Small-Scale Dyadic Rayleigh Fading Channel

As we already mentioned, the small-scale fading channel is
a dyadic channel where the channel model is the product of
two complex Gaussian fading channels. Hence, the envelope of
the one hop fading channel (i.e., the forward or the backward
channels) follows the Rayleigh distribution. The dyadic H
channel is usually modeled in the literature as the product
of two correlated fading channels with a correlation factor ρ
where the channel envelope H follows the envelope of the
transformation of the two complex channels hf and hb. So,
we can write H = |hfhb|, where hb = ρhf +

√
1− ρ2h∗b

and h∗b is the backward independent Rayleigh fading channel
coefficient as an intermediate step in finding the correlated
dyadic fading channel coefficient H. The PDF of H can be
written as both forward and backward Rayleigh channels with
unit mean, (i.e., E(hf) = E(hb) = 1):

fH(h) =
4y

1− ρ2
I0

(
2

ρ h

1− ρ2

)
K0

(
2

h

1− ρ2

)
. (7)

In this article, for the sake of simplicity and tractability, we
will assume only uncorrelated backscatter channels. For ρ = 0,
which means that the forward and the backward link are not
correlated, we can write the PDF of the channel envelope as

fH(h) = 4y K0 (2h), (8)

where Ko(z) =
∫∞
0

cos(z sinh(t)) dt, is the modified Bessel
function of second kind and zero-order. This shape of the
dyadic fading channel is also known in the literature as
the double-Rayleigh fading channel. Doing a simple random
variable transformation to compute the distribution of the
fading channel power such that γ = H2 results in the PDF of
γ as

fγ=H2(γ) = 2K0

(
2
√
γ
)
. (9)

The nth moment of the fading channel envelope can be
found by averaging the PDF of H and can be written as

EH [Hn] =
(

Γ
(
1 + n/2

))2
, (10)



where Γ(z) =
∫∞
0
xz−1e−x dx is the Gamma function. Also,

the nth moment of the channel fading power can be evaluated
as

Eγ2 [γn] =
(
Γ (1 + n)

)2
. (11)

Given the statistical characteristics of the dyadic fading chan-
nel, we now move to the performance analysis.

III. PERFORMANCE ANALYSIS

A. Coverage Probability
The coverage probability is defined as the probability that

the total SNR will be greater than a certain predefined value
β. The SNR at the receiver for a specific location r can be
divided into two terms depending upon whether the drone-to-
tag link is LoS or NLoS:

SNRL =
PtγTL

−2
L (hd, r)G

2(hd, r)

σ2
N

, (12)

SNRNL =
PtγTL

−2
NL(hd, r)G

2(hd, r)

σ2
N

, (13)

where Pt is the reader’s transmit power, σ2
N is the additive

white Gaussian noise (AWGN) power, SNRL is the SNR when
there is a LoS link between the user and the BS and SNRNL

is the SNR when there is a NLoS link between the user and
the drone flying reader (DFR). Hence, the coverage probability
for any arbitrary mobile user can be evaluated as

Pc = Pr[SNRL ≥ β]× PL(hd, r)

+Pr[SNRNL ≥ β]× PNL(hd, r). (14)

The evaluation of Pc requires the evaluation of the two values

Pr[SNRL ≥ β] = Pr

γT ≥
βσ2

NL
2
L(hd, r)

PtG2(hd, r)︸ ︷︷ ︸
βL

 , (15)

Pr[SNRNL ≥ β] = Pr

γT ≥
βσ2

NL
2
NL(hd, r)

PtG2(hd, r)︸ ︷︷ ︸
βNL

 , (16)

where Pr {γT ≥ ξ} can be seen as the complementary CDF
(CCDF) of γT (i.e., 1 − FγT (ξ)). However, we do not have
any close form expression for the CCDF of the overall
received signal γT which is the summation of the power of
the identically independent distributions (i.i.d) Hi. However,
the calculation of the CCDF is made possible using the CDF
inversion theorem using the Gil-Pelaez theorem [33] and hence
the CDF of γT at any given point ξ can be written as

FγT (ξ) =
1

2
+

1

π

∫ ∞
0

Im[e−jtξϕγT (ξ)]

t
dt, (17)

where ϕγT (ξ) is the characteristic function of γT evaluated at
any arbitrary point ξ at the support of γT . The characteristic
function of γ can be written as

ϕγ(s) =
j

s
exp

(
j

s

)
Ei

(
j

s

)
. (18)

where Ei(x) = −
∫∞
−x

e−t

t dt is the the exponential integral.
Hence, the total received power at the end of the multi antenna
dyadic channel (i.e., the reader’s antenna) has the characteristic
function:

ϕαT (s) =

(
j

s
exp

(
j

s

)
Ei

(
j

s

))M
, (19)

Given the characteristic function of the received power, we
can use the Gil-Pelaez theorem of CDF inversion to compute
FγT (ξ). Therefore, (14) can be written as

Pc = [1− FγT (βL)]× PL(hd, r)

+[1− FγT (βNL)]× PNL(hd, r). (20)

Noting that the evaluation of the coverage probability using
the Gil-Pelaez theorem involves the computation of multiple
folded integrals, and we will use the method of moments to
find a good match for FγT (ξ) in the following subsection.

B. Method of Moments for PDF Matching

In statistics, the method of moments is widely used to
approximate or estimate the random variable distribution (i.e.,
PDF and CDF). The idea of the moment matching is to fit the
moments of the sum of the received signal on the receiver’s
(γT ) side to a well-known PDF. In the literature, the Log-
Normal distribution has been successful in matching the PDF
of the sum of i.i.d random variables with a good fitness. The
PDF and the CDF of the Log-Normal distribution are

PDF : fX(x) =
1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
, (21)

CDF : FX(x) =
1

2
+

1

2
erf
(

lnx− µ√
2σ

)
, (22)

where µ and σ are respectively the expected value and standard
deviation of the natural logarithm of the random variable X .
The idea of the moments matching is to find the values of
µ and σ from the first moment and the variance of γT (i.e.,
E[γT ] and E[(γT −E[γT ])2] = Var(γT )). Therefore, matching
the random variable γT involves finding the values of µ and
σ which can be written as

µγT = ln

(
E[γT ]2]√

Var(γT )− E[γT ]2

)
, (23)

σγT =

√
ln

(
Var(γT )

E[γT ]2
+ 1

)
. (24)

Given the values of µγT and σγT , the PDF and CDF of γT
can be approximated as

PDF : fγT (x) ∼ 1

xσγT
√

2π
exp

(
− (lnx− µγT )2

2σ2
γT

)
, (25)

CDF : FγT (x) ∼ 1

2
+

1

2
erf

(
lnx− µγT√

2σγT

)
. (26)



Computation of the Kullback-Leibler (KL) divergence is a
well known method to quantify the difference between the
PDF of two random variables. However, we will examine
the convergence of the approximation in the results section
through comparing it by the exact and Monte-Carlo simula-
tions. Unfortunately, we cannot find the value of the second
moment of γT directly from the characteristic function since
it does not exist due as the derivative of the characteristic
function of γT does not exist for the value s = 0. Hence,
the characteristic function cannot be used to derive the second
moment of γT . Thus, we use the second derivative of the
moment generation functionMγT (t) = ϕ(−it) and hence the
first moment and the variance of γT moment can be written
as shown in the following proposition.

Proposition 1. The first moment and the variance of the
random variable γT can be evaluated as

E[γT ] = M, (27)
σ2
γT = E[(γT − E[γT ])2] = M2 + 3M. (28)

Proof. The derivation of the first two moments is easy and
follows transforming the characteristic function by simply
applying MγT (s) = ϕγT (−is) to find the MGF of γT that
can be written as

MγT (s) =

(
−1

s
exp

(
−1

s

)
Ei

(
−1

s

))M
. (29)

Then, we find the nth moment EγT [γT ] as

E (γnT ) =M(n)
γT (0) =

dnMγT (s)

dtn

∣∣∣∣
s=0

. (30)

Then, given the two derivatives of the MGF and finding
the limits lims→0

dMγT
(s)

dt and lims→0
d2MγT

(s)

dt2 and knowing
that σ2

γT = E
(
γ2T
)
− E (γT )

2, we can write (27) and (28).
Please note however, that the first moment of γT could be
evaluated simply by relying on the assumption that the sum
of M i.i.d random variables is simply the sum of their
expectations which follows from the value in (11) with N = 1
which gives 1 and this validates the evaluation of (27) using
the MGF approach.

Substituting (27) and (28) into (23) and (24) we can write

µγT = ln

(
M√

M (M + 3)

)
, σγT =

√
ln

(
3

M
+ 1

)
. (31)

Then plugging the values in (31) in (26) and then (26) in
(20) will give us the approximate coverage probability for the
overall link.

IV. NUMERICAL RESULTS

In this section, we validate the developed statistical frame-
work for quantifying the coverage probability. We also briefly
explore the impact of different parametric variations on the
coverage probability. We assume an urban environment with
the parameters a = 9.6, b = 0.28 for the path-loss model,

Fig. 2: Coverage probability with r = 100 (m) and σ2
N = −55

dBm.

noise power σ2
N = - 55 dBm, Pt = 0 dB and f = 1000

MHz carrier emitter frequency. Also, as described in the pre-
vious sections, we consider uncorrelated Rayleigh flat wireless
dyadic fading channels. The noise power is estimated from the
practical implementations.

Fig. 3: Coverage probability with r = 100 (m) and σ2
N = −55

dBm.

1) Fitness of the Log-Normal Approximation: Fig. 2 shows
the coverage probability against the threshold value β. The
figure presents a comparison between the exact closed-form
expression as presented in (20), the Log-Normal approxima-
tion as measured by applying the CDF in (26) and the Monte-
Carlo simulations. The figure shows a very good fit for the
Log-Normal approximation, especially for the higher number
of the antennas on the backscatter. For example, the curve for
the setup with hd = 50 (m) for M = 5 shows a very close
fit even for the low values of the coverage threshold β. The
figure also dictates the effect of changing the drone height on
the overall coverage probability. For example, a drone height
of 50 (m) results on higher coverage when compared to 30
(m). The result is due to the effect of the antenna gain pattern



Fig. 4: Coverage probability with r = 100 (m), σ2
N = −55

dBm and β = 5 dB.

and the increase of the probability of LoS links between the
drone and the SN.

Fig. 3 studies the effect of increasing the number of tag
antennas on the overall coverage probability at different setups.
The figure shows a very high precision of the approximation
as the number M increases. In particular, the figure shows that
a coverage match accrues as the number of antennas M goes
beyond five antennas for most of the setups and for different
values of the coverage probability threshold β. The figure also
shows that the same number M reflects the number at which
the fitness of the approximation becomes very precise. This is
intuitive, due to the fact that the Log-Normal distribution is
in fact a Normal distribution but then it is transformed into a
log scale.

2) Optimal Trajectory and Antenna Gain Pattern Effect:
Fig. 4 presents the coverage probability against the drone
height (hd). It is very clear from the figure that there is
always an optimal height for the drone at which the coverage
probability starts to decrease. Again, this is due to the increase
of the LoS probability which increases to some point and then
starts to reduce. Increasing the probability of LoS increases
the coverage probability to the point where the path-loss will
be dominant on the LoS link favorable conditions and the
advantages of increasing the height of the drone starts to
vanish and the coverage probability will start to decrease. It
also shows the effect of increasing the number of antennas on
the overall coverage probability. Again, increasing the number
of antennas on the backscatter tag increases the coverage
probability. However, the advantages of increasing the number
of antennas (i.e., the diversity gain) are larger when increasing
the number of antennas from one to two. It is also worth
mentioning that the number of antennas of the tag does
not affect the optimal height of the drone. This is intuitive
since the number of antennas is not related to the distances
and the channel conditions. However, one may argue that
the location of the antennas is essential in determining the
channel conditions. In this paper, we assume that the trajectory

distances of the drone and the SN tag are large enough to
neglect the antennas separation, and also the elevation angles
of all of the antennas to the drone’s transmitter and receiver
are the same.

V. CONCLUSION

In this paper, we investigated the idea of drone-assisted
multiple antenna backscatter communications. We developed
a point-to-point implementation of the multiple antenna sys-
tem involving the channel conditions of the framework. In
particular, our model explicitly incorporates a dyadic fading
channel where the forward (Drone-to-SN) and backward (SN-
to-Drone) propagation channels are uncorrelated Rayleigh
fading channels which results in a double Rayleigh dyadic
channel. Performance analysis for the dyadic multiple antenna
links is performed using multiple closed-form expressions. The
developed model is examined using the characteristic function
and moment generation function methods. We also use the
CDF inversion theorem and subsequently supported by a CDF
approximation using the method of moments to evaluate the
PDF of the received power of the multiple antenna channel.
We demonstrate that there exists a fruitful interplay between
the SN’s antennas number, drone height, and antenna gain
patterns which jointly dictates an optimal operation point at
which coverage probability is maximized.
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